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1. Weight vs. Tension

Beams will support a roof, and an easy way to support the beams
is to put posts under them. One drawback is that the posts clutter
up your floor space. You can line posts up and enclose them in a
partition wall and pretend you wanted the wall there anyway,
whether you did or not. What you can’t do, without recourse to
clever engineering, is free up floor space by moving the posts wide
apart. If you do that, the beam starts to sag in the middle. If it
sags too much, it breaks.

The limit in spacing posts is set by the material of the beam, as
the builders of Stonehenge apparently understood (Diagram 1.1).
If the crossbeam sags, its upper edge will be compressed, while its
lower edge will grow longer. What counteracts the tendency to sag
is chiefly the tensile strength (resistance to stretch) available along
the lower edge of the beam. Stone is not notable for tensile
strength, so the posts under simple stone beams must be closely
spaced. Aqueducts or bridges can be made in this way, but the
designer will soon discover that when the load they are meant to
bear is added to the weight of the transverse members, the posts
must be still more closely spaced. This wastes time and materials.

Roman engineers discovered a solution, the stone or masonry
arch (Diagram 1.2). Though domes had been built much earlier,
we shall see that the Roman arch provides the first analytic
approach to dome engineering. The arch is essentially a device for
dispensing with a center post, by splitting the thrusts a center post
would support and deflecting them to the sides. The downward
pull of gravity on the keystone is converted into paired outward
thrusts, which the face angles of successive stages transform into
downward thrusts once more, but downward thrusts now borne
by the side columns. Thus the columns actually support the
weight of the keystone and its neighbors, without having to be




located directly under the stones whose weight they bear. So a
central space is cleared beneath the arch.

It is clear that everything is held in place by weight, so that
the continuities of stress are chiefly compressive.

Two or more intersecting arches will define a dome-shaped
space, again clear of supporters because the work of support has
been transferred to peripheral columns. The beehive-shaped tombs
at Mycenae can be analyzed in this way. There the tendency of
such arches to collapse outward is countered by, in effect, burying
the dome and relying on the weight of tons of earth to sustain
outward thrust. For a similar reason the stone dome of the
Pantheon in Rome is enclosed in a huge masonry cylinder.

Though the visible continuities are compressive, there is in fact
an invisible tension network which analysis cannot ignore. Each
component of a stone dome is held in place by the earth’s gravita-
tional field, pulling tensionally ‘““downward” through the structure.
If the dome were inverted, the force that pulls it together would
pull it apart. If it could be placed in orbit, it would drift apart.
Thus its structural integrity depends on the weight of its com-
ponents, and on the way they are oriented in earth’s gravitational
field. A successful design is essentially a feat of balancing. All
forces are resolved along lines perpendicular to earth’s surface, so
that gravity and the mutual impenetrability of stones achieve a
standoff. Any forces that deviate from this system of perpendicu-
lar resolutions will create a tendency to collapse inward or
outward, and must be counteracted by braces or buttresses.
Whether the placement of these is arrived at by rule of thumb, in
the manner of the Gothic cathedral builders, or by sophisticated
calculation in the manner of the twentieth-century engineer, their
necessity says something about the precariousness of the struc-
ture’s equilibrium, even when equilibrium is achieved without
their aid.

If instead of discrete stones we use continuous curved beams of
wood or metal for the arches, we arrive at the familiar ribbed
domes of Saint Peter’s in Rome or the Capitol in Washington, but
we do not substantially alter the structural analysis. We greatly
reduce the superincumbent weight, and we manage to separate the
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dome itself into *“‘skin” (sheathing) and ‘“‘bones” (trusswork), but
we are still relying on compressive continuities to sustain most of
the load. In certain respects, the efficiencies are less rational than
in a stone dome: since the zenith of the arch no longer serves as a
keystone, its chief function now is to load its supporters irrele-
vantly. The greatest concentration of structural members is at the
zenith, where they have nothing to support, but instead constitute
a problem for the members that support them. And successful
design is still a feat of balancing. Unless thrusts are perpendicularly
resolved, the dome will still tend to collapse inward or burst
outward. Design usually elects to err in the latter direction, and
the downward thrust at the zenith is translated into an outward
thrust around the periphery (precisely where the structural
members that ought to cope with it are most widely spaced). Here,
in place of stone buttresses, a peripheral clamping ring holds
things together. At Saint Peter’s the system for coping with
peripheral outward thrusts is reinforced by a huge iron chain
which has kept the dome intact for four hundred years.

The Saint Peter’s chain is a multi-tonned Band-Aid applied to a
region of potential failure. A structure of almost any configuration
can be designed on this principle: put it together somehow, and
reinforce failure points as they appear. Failure points appear
because portions of the structure impose an undue load on other
portions: the load distribution is irregular and only accidentally
related to stress-bearing capacity.

It is possible, however, to take a completely different approach.
The way to do this is to abandon altogether the concept of
structural weight impinging on the compressive continuity of
bearing members, the whole guarded by occasional tensional
reinforcement. Instead of thinking of weight and support, we may
conceive the domical space enclosure as a system of equilibrated
omnidirectional stresses. Such a structure will not be supported. It
will be pulled outward into sphericity by inherent tensional forces
which its geometry also serves to restrain. Gravitation will be
largely irrelevant.

In a soap bubble or a balloon, an envelope of surface tension
attempts to close inward against the outward compressive force of
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the enclosed air. The equilibrium between tension and compres-
sion is modeled as a spherical shape. In a hollow spherical struc-
ture, of which a dome is a section, the compressive forces, like the
tensile, are incorporated into the skin itself, and their direction
cannot be divided in so obvious a way between inward-tending
and outward-tending. The tensile web supports the compressive
members, and is also supported by it. The tensile pull can be as
easily imagined tending outward as inward.

To understand this bootstrap effect, consider first a primitive
tensile structure, consisting of two trees, a clothesline, and two
poles (Diagram 1.3). The poles slant in opposite directions, and
the system sketches a contained space.

Next, discard the trees, and fix the ends of the line to the earth,
slanting the poles so that their lower ends and the anchor points of
the line define a quadrilateral (Diagram 1.4). Provided the poles
are prevented from slipping, this is perfectly stable, and we have
framed a tent with no centerpole.

If we join the rope anchor points by a third pole, and replace
the dotted lines on Diagram 1.4 with additional rope (Diagram
1.5), we shall find that we have a self-sufficient tension /compres-
sion system. The rope holds the poles both together and apart.
The poles in turn lend shape to the prism-shaped rope network.

Here the reader should convince himself of the properties of
this structure by experimenting with a simple model. Three dowels
of convenient length (say, 9 inches) will do for the poles. Drive
nails or pins into their ends and then tie them together as shown in
Diagram 1.5, making the strings two-thirds the length of the
dowels. As the last string is tightened, the tension network can be
seen pulling the system outward into taut equilibrium. Thereafter
the system resists deformation, and if deformed to an extent
permitted by the elasticity of the tendons, will tend to restore
itself to equilibrium.

The vertex points of this system, 6 in number, may be imagined
as points on the surface of an enveloping sphere, since they are
equidistant from a point in the center of the tensile prism. Addi-
tional members (poles and ropes, or struts and strings) can be so
placed as to increase the degree of approximation to a sphere: we
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can make the system as spherical as we like. (This will be discussed
in detail later.) As we do so, we shall find that the poles sketch the
sphere’s inner surface, the ropes its outer. In like manner, the
stresses on the outer skin of a spherical structure tend to be
tensile, and the stresses on its inner skin compressive. And the
integrity of the spherical skin as a whole is wholly independent of
central support. It is also independent of compressive load-bearing
of the kind exemplified in post-and-beam construction or in the
arch, since the compressive members are not in contact.

Now, return to the transition between Diagram 1.4 and Diagram
1.5 and note that structural integrity requires either a complete
rope-and-pole system or else a partial system plus the earth.
Tensional circuits must be completed somehow. Motion pictures
of air-lifted geodesic domes show the bottom edge weaving and
wavering until it is set on the ground and affixed there by
fastenings.

The rope-and-pole prism shown in Diagram 1.5 is the simplest
Tensegrity structure. (Tensegrity = tensional integrity.) It has no
redundant components. All the domes described in this book,
notably the numerous ‘“‘geodesic’ variants, exemplify special cases
of Tensegrity principles. Their salient continuities are tensional,
and their upper portions are not so much supported as lifted by
tensional forces.

Unlike the stone arch or the stone dome, such structures are not
made stronger by being made heavier. In fact, they can with
advantage be made negligibly light in comparison with the
tensional forces that bind the components. The one-way tension
of terrestrial gravity is replaced by the multidirection tension of
structural members. The system is therefore stable in any position.

- Moreover, a tendency to peripheral or local stresses, such as
those restrained by the chain round the dome of Saint Peter’s, is
supplanted by a multidirectional stress equilibrium. A correspond-
ing multidirectional tension network encloses accidental stresses
wherever they arise. There are no points of local weakness inherent
in the system.
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APPENDIX TO CHAPTER 1

Tensegrity Prisms

We have noted that the structure developed in Diagram 1.5
is the simplest Tensegrity, consisting of 3 compressive
struts and 9 tensile tendons (tendon = the portion of the
tensile network between the two adjacent strut ends). It
resembles a triangular prism one end of which has been
rotated with respect to the other, thus twisting the quadri-
lateral sides. One additional strut (Diagram 1.6) will
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convert the end triangles into squares; a further strut

1.7

(Diagram 1.7) will convert them into pentagons; and so
forth. It is possible in this way to generate a potentially
infinite family of T-prisms corresponding to the prisms of
solid geometry.

We may imagine any such T-prism enclosed in a cylinder
of height 4 and diameter d. The tendons (of length €)
outlining the end n-gons are called end tendons. There are
also n side tendons, of length ¢. (In general n denotes the
number of struts, the number of side tendons, and the
number of tendons bounding the end polygons.)

We shall assume that the end n-gons are equilateral, If
they are equal to one another, the prism is uniform. If they

are unequal (though equilateral) the prism is semiuniform,
and would be enclosed by a truncated cone instead of by a
cylinder.

Though they join corresponding vertices of the top and
bottom n-gons, the struts of any T-prism all lean uniformly,
either clockwise or counterclockwise. That is because of the
twist referred to above; the top polygon has been rotated
with respect to the bottom polygon through an angle a
called the twist angle (Diagram 1.8). Whatever the height or
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diameter of the structure, it can be shown that for a given

number of struts, the twist angle is constant and is given by
the formula

a=90°-180°/n. [Eq. 1.1]

This remarkable fact* makes it easy to calculate the
lengths of struts and tendons for any values of n, A, and c.
One way to prove the twist-angle theorem is to use
cylindrical coordinates. Diagram 1.9 shows the coordinate
frame with 1 strut s, 1 side tendon ¢, and 1 end tendon e,
Since the end tendon is one edge of the end n-gon, it
subtends a center angle of 360° /n. The cylindrical coordi-
nates (74, ¢, z) of A and B are thusr,,0, 0 and 7, 360°/n,
0, respectively, Point C is not located above point B but is
displaced counterclockwise by an additional angle a, the

*In effect demonstrated by Roger S. Tobie, “A Report on an
Inquiry into the Existence, Formation and Representation of
Tensile Structures” (Master’s thesis, Pratt Institute: 1967).



