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PREFACE

Early in the seventeenth century, the astronomer/mathematician Johannes
Kepler demonstrated that the movement of the planet Mars is best de-
scribed as elliptical motion about the sun located at a focus of the ellipse.
Late in the seventeenth century, the challenge still remained for astron-
omers to determine the nature of the force required to maintain elliptical
motion about a focal force center: the Kepler problem. The key to New-
ton’s dynamics resides in his solution of the Kepler problem. It is the goal
of this book to make a detailed explanation of that solution available to a
wide range of interested students and scholars. Newton’s answer provides
the analytical basis for the concept of a universal gravitational force. Much
has been written on the ramifications of this solution, but the details of the
solution are rarely made available to any but the expert in the field. The
historian of science may be deterred by the mathematical details, the sci-
entist by the conceptual details, and the student by both sets of details.
When these details are provided, however, there appears a surprisingly clear
and simple analytical structure that frames Newton’s speculation concern-
ing the role and nature of force. This structure arises in Newton'’s early work
at Cambridge (pre-1669); it continues to develop after his revival of inter-
est in the problem after 1679; and it achieves its fruition in the first three
sections of the first edition of his Mathematical Principles of Natural Philoso-
phy (Principia) in 1687.

Chapters 1 and 2 of this book set the Kepler problem in historical and
conceptual perspective with all reference to mathematical detail post-
poned. The object is to set forth clearly the challenge of the direct prob-
lem of elliptical planetary motion and to supply the conceptual tools em-
ployed in its solution, in particular Newton’s debt to the works of both

vit
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Descartes and Galileo. Chapter 3 presents a detailed discussion of two of
Newton’s early (pre-1669) analyses of uniform circular motion. In chap-
ters 4 to 6, Newton'’s solution to the specific direct problem of elliptical
planetary motion is examined in detail as it appears in the set of four the-
orems and four problems that he sent to Halley in 1684 preliminary to the
publication of the Principia. Chapters 7 to 9 explore the revisions and ex-
tensions that are made to these basic elements in the first and revised edi-
tions of the Principia, and chapter 10 transforms the basic theorems into
modern mathematical dress. The book concludes with a translation into
English of the first three sections of Book One of the first edition (1687)
of the Principia. The first edition has rarely been translated and its choice
here provides a capstone for the detailed analyses of this book. It also pro-
vides a comparison to the existing translations of the third edition (1726)
in a direct fashion not available in a variorum edition.

I have used portions of this book in an undergraduate course in the his-
tory of science; the students needed only a general high-school background
of basic mathematics and science. Specifically, I have used the theorems
and problems from the tract On the Motion of Bodies in Orbit (On Motion)
from chapters 4 and 5. In one class period I assigned the details of The-
orem 1 (the area law) and the details of Theorem 3 (the force law). In a
second class period I assigned the details of Problem 1 (a simple applica-
tion) and then discussed the solution of Problem 3 (elliptical planetary
motion). Other sections were assigned as supplementary reference mate-
rial. I have also used the entire book as a text for an advanced junior/
senior undergraduate course in the history of science, usually as a tutorial.
It should serve the same function as a graduate text in departments of his-
tory of science.

This book is intended, however, for scholars as well as for students. My
choice to study the details of a single problem, however important, may
seem overly restrictive. Scholars are interested in the development and
growth of Newton’s thought on the nature and source of gravitational force,
and his reflections on the very nature of scientific analysis itself. A conti-
nuity of method, however, lies beneath the changing vocabulary and de-
veloping techniques of Newton’s work. His method is revealed only by a
study of the details of the solutions in his early and later work. While that
method itself may not be sufficient to reveal Newton’s innermost thoughts,
nevertheless it provides a measure against which speculations can be held.
Consider, for example, the claim often made that Newton'’s early work re-
veals a confusion concerning force that was later eliminated, specifically
that he attempted to combine two or more different force concepts. It is
my contention that an analysis of the details of Newton’s solution reveals
no such confusion. One must understand the details in order to make an
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no such confusion. One must understand the details in order to make an
informed decision. As a second example, consider the question of the
debt owed by Newton to Robert Hooke on the nature of celestial dynam-
ics. The debate revolves about Newton’s switch in terminology from cen-
trifugal to centripetal force following his correspondence with Hooke in
1679. I argue that a close inspection of the details of the post-1679 solu-
tion reveals that Newton’s method did not change from the method used
before 1669. The method survives even if there is a conceptual shift. The
truth of that claim lies buried in the trivia of the solution.

I was encouraged to produce such detailed analyses of Newton'’s solution
by my late dear friend and close colleague, Professor Betty Jo Teeter Dobbs.
Her death brought a great loss to the world of Newtonian scholarship and
to all who knew her. She will be greatly missed. In a letter I received from
her after she read the opening sections of my manuscript, she asked if the
essentials of the solution could not be presented, as she put it, “without all
of that QR / QT2 x SP2,” by which she meant the analytical details. My reply
to her, as it is to all, is that it is not possible and that the task of reading
them is really not that formidable. Moreover, the result is worth the effort.
Newton’s solution to the direct problem of elliptical motion does indeed
supply the key to the dynamics that provided the basis for the concept of
universal gravitational force.

JB?
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Bust of Isaac Newton, by L. F. Roubiliac (c. 1737), currently located in
the entrance hall of the Royal Society in London. Newton was elected
to the Royal Society in 1662 and served as its president from 1703
until his death in 1727. Copyright © The Royal Society. Reproduced
by permission.



ONE

A Simplified Solution

The Area Law, the Linear Dynamics Ratio,
and the Law of Gravitation

Isaac Newton'’s Philosophiae Naturalis Principia Mathematica (The mathemat-
ical principles of natural philosophy), hereafter referred to as the Principia,
justifiably occupies a position as one of the most influential works in West-
ern culture, but it is a work more revered than read. Three truths con-
cerning the Principia are held to be self-evident: it is the most instrumen-
tal, the most difficult, and the least read work in Western science. A young
student who passed Newton on the streets of Cambridge is reported to
have said, “There goes the man who writ the book that nobody can read.”
It fits Mark Twain’s definition of a classic as a work that everyone wants to
have read but that nobody wants to read. The essential core of the Prin-
cipia, however, does not lie beyond the reach of any interested and open-
minded individual who is willing to make a reasonable effort.

In 1693, Richard Bentley, a young cleric who was later to become
Master of Newton’s college, wrote to ask Newton for advice on how to mas-
ter the work. Newton suggested a short list of background materials, and
then, concerning the Principia itself, advised Bentley to read only the first
three sections in Book One (i.e., the first sixty pages of the four hundred
pages that make up the first edition). These sections provide the theoreti-
cal background for the astronomical applications that Newton presented
in Book Three and regarded as of popular scientific interest. In the intro-
duction to Book Three, Newton repeated the advice that he had given to
Bentley:

I had composed the third book in a popular method so that it might be read
by many. But since those who had not sufficiently entered into the principles
could not easily discern the strength of the consequences nor put aside long-
held prejudices, I chose to rework the substance of that book into the form
of propositions in the mathematical way, so that they might be read only by
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4 THE BACKGROUND

those who had first mastered the principles. Nevertheless, I do not want to
suggest that anyone should read all of these propositions—which appear
there in great number—since they could present too great an obstacle even
for readers skilled in mathematics. It would be sufficient for someone to
read carefully the definitions, laws of motion, and the first three sections of
the first book; then let [the reader] skip to this [third] book.!

Newton’s sage advice to the general reader to concentrate on the first three
sections of Book One of the Principia appeared in the first edition of 1687
and remained unchanged in the two revised editions published in 1713
and 1726, all during Newton’s lifetime. It is the third and final edition that
has been reproduced in many subsequent editions and translated into
many other languages. Because this third edition is readily available and
because it is seen to represent Newton’s most fully developed views, it is al-
most exclusively taken as a basis for the study of Newton’s dynamics. The
general reader, however, should not begin with this final edition and its
many additions and revisions, but rather with the first edition and its rela-
tively straightforward presentation.

In 1684, Newton sent to London a tract entitled On the Motion of Bodies
in Orbit (On Motion) that was to serve as the foundation for the first edition
of the Principia of 1687. This comparatively short tract presents in a clean
and uncluttered fashion the basic core of Newton’s dynamics and its appli-
cation to the central problem of elliptical motion. The brief set of defini-
tions that appeared in On Motion was expanded in the Principia into a
much larger set of definitions, laws, and corollaries. Further, the first four
theorems and four problems in On Motion were expanded into fourteen
lemmas and seventeen propositions in the Principia. (Theorem 1 of On
Motion is Proposition 1 of the Principia but Problem 4 of On Motion is Prop-
osition 17 of the Principia). The expanded framework of numbered propo-
sitions by itself, however, does not tell the entire story. Even more trouble-
some for the general reader is Newton’s practice of adding new material
to the old framework. Having established the expanded set of propositions
and lemmas in the early draft of the first edition, Newton elected to hold
to that framework as he inserted additional material in his published re-
vised editions. Even in the preface to the first edition, Newton apologized
to his readers for such insertions.

Some things found out after the rest, I chose to insert in places less suitable,
rather than to change the number of the propositions as well as the cita-
tions. I heartily beg that what I have done here may be read with patience.?

After the publication of the first edition, Newton began work on a grand
radical revision of the Principia in which many of the propositions would
have been renumbered and retitled. In contrast to the single method of
the first edition, Newton clearly presented three alternate methods of dy-
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namic analysis in this projected revised scheme, each method set forth in
a new proposition. Unfortunately, Newton never implemented this new
scheme of renumbering the propositions and lemmas in the published re-
visions. If the challenge of renumbering the propositions and correcting
the cross-references was too much in the limited first edition, then it was
apparently overwhelming in the expanded revised editions. The new ma-
terial added to the published revised editions simply was inserted into the
old structure of the first edition. The third method of dynamic analysis, so
clearly differentiated in the projected revision, was distributed throughout
the theorems and problem solutions of the second and third sections of
the published revisions. The reader of On Motion and, to a lesser extent,
of the first edition is not faced with this difficulty. In those works, Newton
clearly explicates his analysis with a single method applied uniformly to
several problems; until the reader understands his original method and his
unpublished restructuring, however, Newton’s additions to the much stud-
ied revised third edition appear as distractions rather than enrichments.

A SIMPLIFIED SOLUTION

The story of Isaac Newton and the apple is a familiar one. We have all seen
the portrayal of an English gentleman who is sitting under a tree and is
struck on the head by a falling apple. In a flash, he leaps to his feet and
runs off shouting about the theory of universal gravitation. The story has
its foundation in Newton’s own telling and is attested by a number of
memoranda written by those close to him in his later years. The setting is
the garden of his country home, the time is 1666, and Newton, a young
man of twenty-four, is home after a few years at university. The apple tree
that provides his inspiration stands in his front garden, and the fruit it
bears is a yellow-green cooking apple called the Flower of Kent. One ver-
sion of the story, told by Newton in his later years and recorded by an asso-
ciate, John Conduitt, includes the following statement:

Whilst he was musing in a garden it came into his thought that the power of
gravity (which brought an apple from the tree to the ground) was not lim-
ited to a certain distance from the earth but that this power must extend
much farther than was usually thought. Why not as high as the moon said he
to himself and if so that must influence her motion and perhaps retain her
in her orbit, where upon he fell to calculating what would be the effect of
that supposition.3

There is evidence that Newton made a calculation comparing the moon’s
centrifugal force, a celestial event, with the local force of gravity, a terres-
trial event. Since it is a calculation that could have been inspired by any
falling object, why not an apple? That early calculation of 1666 did not
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supply the mathematical basis for the general demonstration that the force
necessary to maintain a planet in an elliptical orbit about the sun located
at a focus of the ellipse is inversely proportional to the square of the dis-
tance between the sun and the planet (i.e., the law of universal gravita-
tion). It was late in 1684, after Edmund Halley’s famous visit to Newton’s
rooms at Cambridge University, before Newton gave anyone a copy of
such a proof—a proof which Newton claimed to have produced in 1679.
The inspiration of the falling apple of 1666 required more than a decade
to reach its final goal.

In 1684, Newton sent Halley a solution to the problem of planetary
motion in the tract On Motion. That solution is expressed neither in the
mathematics of classical geometry nor in the mathematics of contempo-
rary differential and integral calculus. As such it is a challenge to the mod-
ern physicist as well as to the classical scholar. The outline of the solution,
however, is not complicated; it is the details that provide the challenge.
Newton adapted the linear kinematics of Galileo to the inertial dynamics
of Descartes and determined the nature of the force necessary to maintain
planetary motion as described by Kepler. If a constant linear acceleration
A is acting on a body of mass m, then its displacement D is proportional
to the constant acceleration A and the square of the time ¢ (i.e, D =
(¥2) At?). If one adds to this simple kinematic relationship the dynamic re-
lationship that the acceleration A is proportional to the force F (i.e., F=
mA), then the force Fis directly proportional to the displacement D and
inversely proportional to the square of the time ¢ (i.e., F= (2m) D/ t2).
Newton’s genius manifests itself in adapting this simple proportional rela-
tionship of constant rectilinear force, distance, and time to the more com-
plex problem of the nature of the planetary force, which is not constant.
Newton’s unique contribution was the assumption that the variable force
could be considered to be approximately constant over a very short period
of time. The three elements that Newton generated to produce the solu-
tion can be set forth quite simply: first, the relationship that expresses the
time in terms of the area; second, the relationship that expresses the force
in terms of the displacement and the time (and hence in terms of the
area); and finally, the relationship that expresses the force necessary for
planetary motion in terms of distance (i.e., the demonstration that the
gravitational force is inversely proportional to the square of the distance).

Theorem 1

The first element is the law of equal areas in equal times, demonstrated
in figure 1.1. If the force acting on a body is always directed to a fixed
point S, then the time required to travel from point Pto point Q is propor-
tional to the shaded area SPQ. If successive areas are generated in equal
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Figure 1.1 If a body moves from point P to point Q under a centripetal force
directed toward the fixed point §, then the shaded area SPQ is proportional to the
time.

S A
Figure 1.2 The force Frequired to maintain any orbit APQ about a center of force

S is proportional to the displacement QR and inversely proportional to the area
SQP.

times, then the areas swept out by the line from the body to the center of
force are equal. This relationship was first recognized by the astronomer
Johannes Kepler in 1609, but it was not until after 1679 that Newton dem-
onstrated its general application to any motion under any force directed
toward a fixed center. The area law is the link that was missing in Newton’s
earlier analysis of motion and it is the key element in his celestial dynam-
ics; it appears as Theorem 1 in the 1684 tract On Motion and as Propo-
sition 1 in the 1687 Principia (see chapter 4 for details).

Theorem 3

The second element is the basic relationship that I have elected to call
the “linear dynamics ratio.” Figure 1.2 is similar to Newton’s diagram for
Theorem 3 in On Motion and for Proposition 6 in the Principia. The line
RPZis the tangent to the curve APQ. If no force acted on a moving body at
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point P, then the body would continue in a given time interval along the
tangent line to the point R. Because a force does act continuously on the
body, however, it moves instead to the point Q. The displacement QR rep-
resents the deviation of the body from the tangential path PR due to the
action of the force. Galileo had demonstrated in his experiments with in-
clined planes that for motion under a given constant force, the distance
traveled is proportional to the square of the time. Newton assumes that as
the point Q shrinks back to the point P, then the force can be treated as if
it were constant. Thus, the distance QR is proportional to the square of
the time and to the magnitude of the force at point P, or what is equiva-
lent, the force is directly proportional to the distance QR and inversely
proportional to the square of the time. From Theorem 1, the time is pro-
portional to the triangular area SPQ and thus can be expressed in terms of
the altitude QT and the base SP. The result is that the force Fat point P
can be expressed as follows:

Force o distance / (time squared) «< QR / (QT? x SP?)

The challenge is to express the ratio QR/QT? in terms of SP and con-
stants of the orbital figure, and hence to express the linear dynamics ratio
QR/ (QT? x SP?), and thus the force, in terms of the radial distance SP
(see chapter 2 for a review and chapter 4 for a detailed discussion of this
theorem).

Problem 3

The third element is a demonstration by Newton of a relationship be-
tween portions of an ellipse. Figure 1.3 is a drawing of a planetary ellipse
APQ with a focus at point S. The line LSL drawn through the focus § and
perpendicular to the major diameter of the ellipse is called the latus rec-
tum L. Newton demonstrates in Problem 3 and in Proposition 11 that as
the point Q shrinks back to the point P, the ratio QR/ QT? becomes equal
to the reciprocal of the latus rectum L, which is a constant for a given ellipse.
Thus, the force can be obtained quite simply from the linear dynamics
ratio above:

Force e« QR/ (QT?x SP?) =1/ (Lx SP2) < 1 / SP2

This result states that the force required to maintain a planet in an ellipti-
cal orbit about the sun located at a focus of the ellipse is proportional to
the inverse square of the distance between the planet P and the sun S.
Thus is demonstrated the mathematical basis for the law of universal gravi-
tation, the essence of celestial interactions, which Newton provides for fu-
ture astronomers and physicists (see chapter 2 for a review and chapter 5
for a detailed discussion of this problem).
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Figure 1.3 As point Q shrinks back to point B, the ratio QT2/ QR becomes equal to
the line LSL, which is a constant (the latus rectum) for a given ellipse.

The details of the demonstrations of the relationships above are more
demanding than is evident in this verbal gloss. Taken step by step, how-
ever, the analysis will become clear to the reader. At times Newton makes
analytical leaps that for him are obvious and it is then my duty to supply
the intervening steps. Thus, it is the number of steps rather than the size
of any single step that offers the challenge. The reward for the patient
reader is an insight into the solution of the problem of planetary motion,
a problem that challenged astronomers for millennia. That solution is
now universally held to have provided a major turning point in astronomy
and natural philosophy in the late seventeenth century.

THE RECEPTION

Professional scholars, however, did not greet the publication of the 1687
Principia with unreserved praise. The dominant figure in seventeenth-
century natural philosophy was the French scholar René Descartes, whose
mechanical description of planets carried in a swirling vortex of celestial
ether provided the model for many other natural philosophers. Two other
outstanding figures in European mathematics and natural philosophy at
the time of the publication of the first edition of the Principia were the
Dutch scholar Christiaan Huygens and the German scholar Wilhelm Gott-
fried Leibniz. Both felt that Newton’s description of the mathematical
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nature of gravitational force had failed to address the fundamental ques-
tion of the physical cause of the force. It would appear that Huygens ac-
cepted the inverse-square law as a genuine discovery, although he believed
that its cause remained to be investigated. Leibniz initially praised the 1687
Principia as one of the most important works of its kind since Descartes.
He criticized Newton, however, for his rejection of Cartesian vortices and
for his failure to provide an alternate physical cause for the gravitational
attraction. In England, the astronomer and mathematician Edmund Halley
served as the editor of the 1687 Principia and it was published under the
imprimatur of the Royal Society. Even with this auspicious beginning, it
was not without controversy that the Principia was finally published. The
English scientist Robert Hooke claimed priority for the discovery of the in-
verse square nature of the gravitational force, a claim that Newton vehe-
mently rejected. Despite individual reservations, the overall reception by
the scholarly community was positive, and Newton established himself as
one of the leading mathematicians of Britain and Europe. As one modern
scholar of Leibniz’s work put it, “Already in . . . 1695, Leibniz had aban-
doned the project of presenting a theory capable of competing with New-
ton’s. Despite his subtle philosophical and theological objections, in the
eighteenth century Leibniz had left Newton master of celestial mechanics.”

As the scholarly reputation of the Principia grew, even those who pro-
fessed little or no mathematical ability came to pay homage. The English
philosopher John Locke, in exile in Holland at the time of the book’s pub-
lication, obtained assurance from Huygens that the mathematical proposi-
tions of the Principia were valid and then applied himself to understand-
ing Newton’s conclusions. Locke eventually referred to “the incomparable
Mr. Newton” in the preface to his An Essay Concerning Human Understand-
ing. The French writer and philosopher Frangois Voltaire waxed even more
eloquent when he drew the following comparison between Newton and
the German astronomer Johannes Kepler: “Before Kepler, all men were
blind. Kepler had one eye, Newton had two.” The English poet Alexan-
der Pope’s often quoted heroic couplet, published shortly after Newton’s
death, revealed even more forcefully the popular view that Newton and
the Principia opened doors that had long been closed: “Nature, and Na-
ture’s Laws lay hid in night: / God said, Let Newton be! and all was light.”
In the dedicatory poem to the first edition of the Principia, Edmund Halley
reflected on Newton’s “unlocking the treasury of hidden truth” and con-
cluded that “nearer to the Gods no mortal may approach.”

As the eighteenth century drew to a close, not everyone continued to
praise the new world that appeared in Newton’s work. Figure 1.4 is an
early nineteenth-century caricature of Newton by the philosopher-poet-
artist William Blake, who, putting imagination above reason, reacted neg-
atively to the eighteenth-century veneration of Newton. In the portrait,
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Figure 1.4 William Blake’s portrait of Isaac Newton. Courtesy Tate Gallery, London.

triangles abound as the symbol of the geometrical and mathematical men-
tality that Blake opposed. Newton holds a triangular compass as he draws
a triangular figure on the parchment, his fingers make triangles with the
object in his hand, his legs form triangles with each other and with the
rock on which he sits, the muscles of his body take on geometric forms
that defy anatomical description, and triangular eyes scheme as they look
down a triangular nose at geometric plans that triangular hands create
below. For Blake, Newton symbolized the eighteenth-century regard for
human reason that placed God above and separate from women and men,
while Blake regarded human imagination as the essential divine quality by
which God was made manifest.5

Neither Newton nor his Principia deserves the extreme judgments of
Pope and Blake; the work is ranked as one of the major intellectual achieve-
ments of Western culture. The Enlightenment of the eighteenth century
and the Romanticism of the nineteenth century both have their roots in
the acceptance or rejection of the new worldview that paid homage to
Newton’s scientific writings. Just as his Optics provided a model for the ex-
perimental method, so his Principia laid the foundations for the theoreti-
cal method. It was, in fact, the wave of the future.



