1 Galilean Relativity

1.1. Rerativitry AND COMMON SENSE

A child walks along the floor of a moving train. Passengers on the train
measure the child’s speed and find it to be 1 meter per second. When
ground-based observers measure the speed of the same child, they obtain
a different value; observers on an airplane flying overhead obtain still
another. Each set of observers obtains a different value when measuring
the same physical quantity. Finding the relation between those values is
a typical problem in relativity.

There is nothing at all startling about these observations; relativity was
not invented by Albert Einstein. Einstein’s work did, however, drastically
change the way such phenomena are understood; the term “relativity” as
used today generally refers to Einstein’s theory.

The study of relativity began with the work of Galileo Galilei around
1630; Isaac Newton also made important contributions. The ideas de-
scribed in this chapter, universally accepted until 1900, are known as
“Galilean relativity.”

Galilean relativity is fully consistent with the intuitive notions that we
call “common sense.”! In the example above, if the train moves at 30
meters per second (m/sec) in the same direction as the child, common
sense suggests that ground-based observers should find the child’s speed
to be 31 m/sec; Galilean relativity gives precisely that value. Einstein’s
theory, as we shall see, gives a different result.

In the case of the child, the difference between the two theories is mi-
nute. The speed measured by ground observers according to Einstein’s

1. According to Einstein, common sense is “that layer of prejudice laid down in
the mind prior to the age of eighteen.”
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relativity differs from the Galilean value 31 m/sec only in the fourteenth
decimal place; no measurement could possibly detect such a tiny differ-
ence. This result is characteristic of Einsteinian relativity: its predictions
are indistinguishable from those of Galilean relativity whenever the ob-
servers, as well as all objects under observation, move slowly relative to
one another. That realm is generally called the nonrelativistic limit, al-
though Galilean or Newtonian limit would be a more apt designation.
“Slowly” here means at a speed much less than the speed of light.

The speed of light plays a central role in Einstein’s theory; whenever
any speed in the problem approaches that value, Einsteinian relativity
departs dramatically from that of Galileo and Newton. Because the speed
of light is so great, however, most commonly observed phenomena are
adequately described by Galilean relativity.

The “special” theory of relativity, which is the principal subject of this
book, is restricted to observers who move uniformly, that is, at constant
speed in the same direction. If observers move with changing speeds, or
along curved paths, the problem of relating their measurements is much
more complicated. Einstein addressed that problem as well, in his “gen-
eral” theory of relativity. Because the general theory involves quite ad-
vanced mathematics, I can give only a descriptive treatment in chapter
8. The special theory, in contrast, requires only elementary algebra and
geometry and can be presented with full rigor.

Many of the conclusions of special relativity run counter to our intu-
ition concerning the nature of space and time. Before Einstein, no one
doubted that time is absolute. Newton put it as follows in his Principia:
“ Absolute, true, and mathematical time, of itself and from its own nature,
flows equably without relation to anything external.”

Special relativity obliges us to abandon the absolute nature of time. We
shall see, for example, that the time order of two events can depend on
the relative motion of the observers who view them. One set of observers
may find that a certain event A occurred before another event B, whereas
according to a second set of observers, who are moving relative to the
first, B occurred before A. This result is surely difficult to accept.

In some cases, a reversal of time ordering would be truly bizarre. Sup-
pose that at event A a moth lands on the windshield of a moving car; the
car clock reads 12:00. At event B another moth lands; the car clock now
reads 12:05. For the driver of the car, the order of those events is a direct
sensory experience: she can see both events happen right in front of her
and can assert with confidence that A happened first. If observers on the
ground were to claim that event B happened first, they would be denying
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that sensory experience; moreover, the car clock would according to them
be running backward! (It would read 12:05 before it reads 12:00.)

As we shall see, special relativity implies that moving clocks run slow.
That is itself a strange result, but clocks running backward would be too
much to swallow. No such disaster arises, however. In the case of the
moths, event A happens first according to all observers. A reversal of time
ordering can occur only for events spaced so far apart that no single ob-
server (and no single clock) can be present at both. The order of such
events is not a direct sensory experience for anyone; it can be determined
only by comparing the readings of two distinct clocks, one present at event
A and the other present at B. If two sets of observers disagree on the order
of those events, no one’s Sensory experience is contradicted and no one
sees any clock running backward. The proof of this assertion, given in
chapter 5, depends on the fact that nothing can travel faster than light,
one of the important consequences of special relativity.

A logical requirement of any theory is causality. If event A is the cause
of event B, A must occur before B: the cause must precede the effect. We
will see in chapter 5 that special relativity is consistent with the causality
requirement. Whenever a cause-and-effect relation exists between two
events, their time order is absolute: all observers agree on which one hap-
pened first.

Figure 1.1 shows a hypothetical experiment to illustrate the relativistic
reversal of time ordering. Event A takes place in San Francisco and event
B in New York. According to clocks at rest at those locations, A occurs
before B. The same events are monitored by observers on spaceships mov-
ing from west to east at equal speeds; one ship is over San Francisco when
event A occurs, and the other is over New York when event B occurs.
Special relativity predicts that if the ships are moving fast enough, their
clocks can show event B happening before A. Notice that no single clock
is present at both events; the relevant times in the problem are recorded
by four distinct clocks, two on the ground and two on the spaceships.

[ hasten to add that no such experiment has ever been performed. The
fastest available rockets travel a few kilometers per second, only about one
hundred thousandth the speed of light. At that speed, the events of figure
1.1 would have to be separated in time by less than a millionth of a second
if a reversal of time order were to be detectable. Moreover, the speeds of
the two spaceships would have to be equal to within a very small toler-
ance. The experiment is just too hard to carry out. But we can be confident
that if faster rockets were available and if other technical requirements
were met, the effect could be detected.
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Fig. 1.1. Hypothetical experiment to demonstrate
the reversal of time ordering predicted by special
relativity. Event A occurs in San Francisco, event B
in New York. Each event is detected by two sets
of observers—one set fixed on earth and the other
located on spaceships flying at equal (constant)
speeds. Each set of observers measures the times of
the two events on its own clocks, which have been
previously synchronized. According to earth clocks,
event A happens before B, whereas according to
spaceship clocks, B happens before A. The time in-
tervals shown on the clocks are much exaggerated.

The evidence that confirms special relativity comes principally from
atomic and subatomic physics. In many experiments particles move at
speeds close to that of light, and the effects of special relativity are dra-
matic. Particles are created and annihilated in accord with the famous Ein-
stein relation E=mc% No understanding of such phenomena, or of the
kinematics of high-energy particle reactions, would be possible without
relativity. Thus Einstein’s theory is confirmed daily in every high-energy
physics laboratory. Particle reactions are not within the realm of everyday
experience, however; in the latter realm, everything moves fairly slowly?

2. An obvious exception is light itself, which is part of everyday experience. Al-
though any phenomenon that involves light is intrinsically relativistic, most opti-
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and relativistic effects are not manifested. If the speed of light were much
smaller, the effects of special relativity would be more prominent and our
intuition concerning the nature of time would be quite different.

The preceding discussion is intended to provide a taste of what is to
come and to encourage the reader to approach relativity with an open
mind. | am not suggesting that any conclusion contrary to one’s intuition
be accepted uncritically, even though the context may be restricted to un-
familiar phenomena. On the contrary, any such conclusion must be vigor-
ously challenged. Before abandoning ideas that appear to be self-evident,
one must be satisfied that the experimental evidence is sound and the
logical arguments are compelling.

1.2. Events, OBSERVERS, AND FRAMES OF REFERENCE

I begin by defining some important terms. In relativity an event is any
occurrence with which a definite time and a definite location are associ-
ated; it is an idealization in the sense that any actual event is bound to
have a finite extent both in time and in space.

A frame of reference consists of an array of observers, all at rest rela-
tive to one another, stationed at regular intervals throughout space. A
rectangular coordinate system moves with the observers, so that the x, y,
and z coordinates of each observer are constant in time. The observers
carry clocks that are synchronized: each clock has the same reading at the
same time.’

Each observer records all events that occur at her location. Each event
has four coordinates: three space coordinates and a time. By definition,
the space coordinates are the coordinates of the observer who detected the
event and the time of the event is the reading of her clock when it occurs.

A second frame of reference consists of another array of observers, all
at rest relative to one another and all moving at the same velocity relative
to the first set. They have their own coordinate system and their own
(synchronized) clocks, and they also record the coordinates of events. The
coordinates of a given event in two frames of reference are, in general,

cal phenomena can be explained without invoking the specific value of the speed
of light. For example, refraction (the bending of a light ray when it crosses the
boundary between air and glass) depends only on the ratio of the speeds of light
in the two media. Hence a nonrelativistic theory of refraction is quite adequate.
Effects of relativity are manifested in experiments that depend on the time
required for light to traverse a specified path, such as the Michelson-Morley ex-
periment, discussed in detail in chapter 2.
3. The synchronization of clocks is discussed in detail in chapter 3.
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different. The central problem of relativity is just to determine the rela-
tion between the two sets of coordinates; this turns out to be not so simple
a matter as it first appears.

Throughout this book, whenever observations in two frames of refer-
ence are being compared, one frame will be called S and the other S'.
Coordinates measured in frame S’ will be designated by primed symbols,
and those measured in frame S will be designated by unprimed symbols.
Events will be labeled E,, E,, E5, and so on. Thus, x1, y1, z;, and t] denote
the coordinates of event E; measured in frame S’; x,, y5, z,, and t, denote
the coordinates of event E, measured in frame S, and so on.

As an illustration, let us return to the problem of the child walking on
a train. Figure 1.2 shows the child’s motion as seen in two frames of
reference, one fixed on the train (sketches [a] and [b]) and one fixed on
the ground (sketches [c] and [d].) S is the ground frame and S’ the train
frame. The two sets of axes are parallel to one another. The train’s motion
as seen from the ground is taken to be in the x direction and the floor of
the car is in the x-y plane. Since the child has no motion in the z direction,
the figure has been simplified by omitting the z and z’ axes.

In figure 1.2a, the child is just passing a train observer labeled H'; this
is event E;. The space coordinates of E; in S’ are x{ =2, y; =1, z; =0; its
time coordinate t; is the reading of the clock held by H' as the child passes
her. Some time later, as shown in figure 1.2b, the child passes a second
train observer, labeled J’; this is event E,. The space coordinates of E, are
x5=3, y,=4, z,=0; its time coordinate t} is the reading of the clock held
by J'.

Figure 1.2c shows event E; as seen in the ground frame. The child is
just passing ground observer B. The space coordinates of E; in S are x; =2,
y1=1, z;=0; its time coordinate is read off B’s clock. Figures 1.2a and
1.2c should be thought of as being superposed: the positions of ground
observer B, train observer H', and the child all coincide when E; occurs.

Figure 1.2d similarly shows E, as seen in frame S; the child is now
passing ground observer Q. The space coordinates of E, in frame S are
x,=5, Yy, =4, z,=0. The positions of Q, ], and the child all coincide at E,.
Notice that B and H’, whose positions coincided at E;, no longer coincide
at E,. As seen from the ground, all the train observers have moved to the
right during the interval between the two events. (As seen from the train,
all the ground observers have moved an equal distance to the left.)

Inspection of the figures reveals that the length of the child’s path mea-
sured in the ground frame is greater than that measured in the train
frame. The child’s speed in the ground frame is correspondingly greater
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Fig. 1.2. Motion of child as seen in two frames of reference—one fixed
on the train (primed coordinates, sketches [a] and [b]) and one fixed on
the ground (unprimed coordinates, sketches [c] and [d]). (a) Child passes
train observer H' (event E,); (b) some time later, child passes train ob-
server | (event E;). The path of the child, as seen in the train frame, is
indicated by the dashed line in sketch (b). (c) Event E, is noted by ground
observer B, whose location at that instant coincides with that of H'. (d)
Event E, is noted by ground observer Q, who at that instant coincides
with J'. The dashed line in sketch (d) shows the path of the child as seen

in the ground frame.

(provided the elapsed time is the same in both frames, which is true in
Galilean relativity).

The notion of a frame of reference as an (essentially infinite) array of
observers is not intended to be a literal description of how measurements
are carried out. It would be impractical, to say the least, to station observ-
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ers throughout all space in the manner prescribed. But there is no reason
in principle why that could not be done. In what follows, every event is
assumed to be monitored by observers on the scene.

1.3. Tue PriNcIPLE OF RELATIVITY AND INERTIAL FRAMES

The principle of relativity was first enunciated by Galileo in 1632. Gali-
leo’s argument is clear and graphically put.

Salviatus: Shut yourself up with some friend in the main cabin be-
low decks on some large ship and have with you there some flies,
butterflies, and other small flying animals. Have a large bowl of wa-
ter with some fish in it; hang up a bottle which empties drop by
drop into a wide vessel beneath it. With the ship standing still, ob-
serve carefully how the little animals fly with equal speed to all
sides of the cabin. The fish swim indifferently in all directions; the
drops fall into the vessel beneath; and, in throwing something to-
ward your friend, you need throw it no more strongly in one direc-
tion than another, the distances being equal; jumping with your
feet together, you pass equal spaces in every direction. When you
have observed all these things carefully (though there is no doubt
that when the ship is standing still everything must happen in this
way), have the ship proceed with any speed you like, so long as the
motion is uniform and not fluctuating this way and that. You will
discover not the least change in all the effects named, nor could
you tell from any of them whether the ship was moving or stand-
ing still. In jumping, you will pass on the floor the same spaces as
before, nor will you make larger jumps toward the stern than to-
ward the prow, . .. despite the fact that during the time that you
are in the air the floor under you will be going in a direction oppo-
site to your jump. . . . Finally the butterflies and flies will continue
their flights indifferently toward every side, nor will it ever hap-
pen that they are concentrated toward the stern, as if tired out
from keeping up with the course of the ship, from which they will
have been separated during long intervals by keeping themselves
in the air. . . . The cause of all these correspondences of effects is
the fact that the ships’ motion is common to all the things con-
tained in it.*
4. Galileo Galilei, Dialogue Concerning the Two Chief World Systems, translated
by Stillman Drake (Berkeley and Los Angeles: University of California Press,
1953), 186-187. It is not clear whether Galileo ever actually performed the ship
experiments. Following the quoted speech, Sagredo says, “Although it did not
occur to me to put these observations to the test when [ was voyaging, I am sure

that they would take place in the ways you describe” (Dialogue, 188). This sug-
gests that Galileo had not done the experiment. But see the remarks below.
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Galileo is asserting, in effect, that the laws of nature are the same in
any two frames of reference that move uniformly with respect to one
another. 1f identical experiments are carried out by two sets of observers,
with identical initial conditions, all the results will be the same. It follows
that there is no way to determine by means of experiments carried out in
a given frame of reference whether the frame is at rest or is moving uni-
formly. Only the relative velocity between frames can be measured. This
set of assertions is called the principle of relativity.

Galileo’s motivation was to refute Aristotle’s argument that the earth
must be standing still. If the earth were moving, Aristotle had claimed, a
stone dropped from the top of a tower would not land at its base, since the
earth would have moved while the stone was falling. Galileo argues that
the earth plays a role entirely analogous to that of the ship in his example;
just as a stone dropped from the top of a mast lands at its foot whether
the ship is moving or at rest, so does one dropped from a tower on earth.
And just as observations carried out within the ship cannot be used to
decide whether the ship is standing still or moving uniformly, so the ob-
served motion of objects on earth implies nothing about the motion of the
earth other than that it is (approximately) uniform.

Although Galileo may not have carried out all the ship experiments,
he definitely performed the falling rock experiment as well as many oth-
ers on falling bodies. In a famous letter replying to Francesco Ingoli, who
had attacked his views and sided with Aristotle, Galileo says, “whereas I
have made the experiment, and even before that, natural reason had
firmly persuaded me that the effect had to happen in the way that it
indeed does.”®

Several remarks are in order concerning Galileo’s principle of relativ-
ity. First, the observations on which the principle was based were neces-
sarily limited to quite slow speeds. Perhaps if the ship were moving very
rapidly, shipborne observers might detect unusual effects that would en-
able them to conclude that their ship was indeed in motion. If that were
to happen, the relativity principle would be only approximately valid. The
laws of nature might be (very nearly) the same in two frames of reference

5. The Galileo Affair, editor and translator Maurice A Finocchiaro (Berkeley and
Los Angeles: University of California Press, 1989), 184. The motion of an object
dropped from a moving vehicle had been debated long before Galileo. Tycho
Brahe, as late as 1595, still sided with Aristotle, but Thomas Digges gave a correct
analysis in his book, A Perfitt Description of the Celestial Orbes, published in
1576. Giordano Bruno also studied the problem and came to the correct conclu-
sion. According to Drake, Galileo probably knew about Bruno’s work although he
did not refer to it. (Bruno had been burned at the stake as a heretic.)
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that move slowly relative to one another but quite different in two frames
whose relative velocity is great. Galileo’s observations obviously could not
exclude such a possibility, and even today the direct evidence from physics
in moving laboratories is limited to fairly low velocities. Indirect evidence,
however, strongly supports the hypothesis that the relativity principle
holds for any speed.

Galileo’s experiments all deal with phenomena in what is nowadays
called mechanics; on the basis of those experiments, therefore, one can
conclude only that a principle of relativity applies to the laws of mechan-
ics. Perhaps other experiments, involving different phenomena, can dis-
tinguish among frames.

Nineteenth-century physicists believed that electromagnetic and opti-
cal phenomena provide just such a distinction. According to the view prev-
alent during that period, there exists a unique frame of reference in which
the laws of electromagnetism take a particularly simple form. If that were
so, the principle of relativity would not apply to electromagnetic phenom-
ena: the results of some experiments would depend on the observer’s mo-
tion relative to the special frame.

Many experiments were performed with the aim of determining
the earth’s motion relative to the special frame, but they all failed to de-
tect any effect of that assumed motion. The most important was the
Michelson-Morley experiment, described in chapter 2.

For Einstein, it was aesthetically unsatisfying that a principle of relativ-
ity should hold for one set of phenomena (mechanics) but not for another
(electromagnetism.) He postulated that Galileo’s principle applies to all
the laws of nature; this generalization forms the basis for special rela-
tivity.

The relativity principle has an important philosophical implication. If
there is no way to distinguish between a state of rest and a state of uni-
form motion, absolute rest has no meaning. Observers in any frame are
free to take their own frame as the standard of rest. Shore-based observers
watching Galileo’s ship are convinced that they are at rest and the ship is
in motion, but observers on the ship are equally entitled to regard them-
selves as being at rest while the shore along with everything on it moves.
The question, Which observers are really at rest? has no meaning if there
is no conceivable experiment that could answer it. (According to observers
in an airplane flying overhead, both shore observers and ship observers
are in motion.)

In sum, the principle of relativity denies the possibility of absolute rest



Galilean Relativity /11

(or of absolute motion). Motion can be defined only relative to a specific
frame of reference, and among uniformly moving frames strict democracy
prevails: any frame is just as good as any other. Any reference to a body
“at rest” should be understood to mean “at rest in a frame of reference
fixed on the earth” (or in some other specified frame).

The restriction to uniform motion is essential to the relativity princi-
ple. The laws of nature are not the same in all frames of reference.® As
Galileo fully realized, accelerated motion is readily distinguished from
uniform motion. If a ship moves jerkily or changes direction abruptly,
things behave strangely: suspended ropes do not hang vertically, a cake of
ice placed on a level floor slides away for no apparent reason, and the
flight pattern of Galileo’s butterflies appears quite different than it does
when the ship is moving uniformly. Any of these effects tells the observ-
ers that their frame is accelerated.

The distinguishing feature of uniformly moving frames is that in any
such frame the law of inertia holds: a body subject to no external forces
remains at rest if initially at rest, or if initially in motion, it continues to
move with constant speed in the same direction. In an accelerated frame,
the law of inertia does not hold. Instead bodies seem to be subjected to
peculiar forces for which no agent can be identified. Those forces, called
“inertial forces,” have observable consequences.

Frames of reference in which the law of inertia holds are called inertial
frames;” all others are noninertial. In terms of this nomenclature, we can
rephrase Galileo’s principle of relativity as follows:

If S is an inertial frame and S’ is any other frame that moves uni-
formly with respect to S, then S’ is also an inertial frame. All the
laws of mechanics are the same in S’ as in S, and no (mechanical)
experiment can distinguish S’ from S.

The discussion here will be confined almost entirely to inertial frames.

Observers in a given frame can determine whether their frame is iner-
tial by carrying out experiments to test whether the law of inertia holds.
A frame of reference fixed on earth satisfies the criterion fairly closely;
for most purposes such a frame can be regarded as inertial. Because of the
earth’s rotation, however, an earthbound frame is not strictly inertial.

Even a frame of reference fixed at the pole, which does not partake of
the earth’s rotation, is not strictly inertial because the earth is moving in

6. See, however, the discussion of the principle of equivalence in chapter 8.
7. Einstein called them “Galilean frames.”
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a curved orbit around the sun. And the sun is itself in orbit about the
center of the galaxy. An inertial frame is an idealization in the sense that
no experiment can assure us that our frame is strictly inertial, that is, that
a body subject to no forces does not experience some tiny acceleration.

1.4. THE GALILEAN TRANSFORMATION

An event E occurs at time t at the point x, y, z, as measured in some
inertial frame S. What are the coordinates (x', y', z', t') of E in another
inertial frame, S', that moves at velocity V relative to S? The answer that
any physicist would have given to this question before 1905 is the Gali-
lean transformation, derived here. The derivation is straightforward and
the results appear almost self-evident. As we shall see, however, special
relativity gives a different answer.

For convenience, let the two sets of axes be parallel to one another,
with their relative motion in the x (or x') direction (fig. 1.3). At some
instant the origins O and O’ coincide and all three pairs of axes are mo-

2z, 2" axes y, Yy  axes zaxis 2z axis y axis y'axis

0,0 X, X" axes

(a)

Fig. 1.3. Coordinates of an event in two frames of reference, according to
Galilean relativity. The primed coordinate system is moving from left to right,
as seen by observers in the unprimed system. (a) Primed and unprimed axes
momentarily coincide. The clocks of all observers are arbitrarily set to zero at
this instant. (b) The state of affairs at some later time, t. O’, the origin of the
primed system, has moved a distance Vt down the x axis. The x and x' axes
still coincide. The event in question occurs at the point labeled E. The space
coordinates of the event in both frames are indicated. As the figure shows, y
and y' are equal, but x' is less than x. (For simplicity, the z coordinate of the
event is assumed to be zero.)
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mentarily superposed (fig. 1.3a). At that moment?® all observers in both
frames synchronize their clocks by setting all their readings to zero.

The relation between the times t and t' can be written directly. Since
time is absolute, we have simply

=t (1.1a)

The spatial coordinates of E in S’ can be taken from the figure. At time t
the two origins are separated by the distance Vt. Hence the relation be-
tween x and x’ is

x'=x—Vt (1.1b)
The y and z coordinates of E are the same in both frames:

y' =y (1.1¢)
z'=2z (1.1d)

Equations (1.1a—d) constitute the Galilean transformation.

Inverse Transformation

Suppose we are given the coordinates of an event in S’ and want to find
its coordinates in S. Solving equations (1.1a-d) for the unprimed coordi-
nates in terms of the primed ones, we get

b=t (1.2a)
x=x"+Vt (1.2b)
y=y' (1.20)
z=27' (1.2d)

which is the desired inverse transformation.

If primed and unprimed coordinates are interchanged and V is changed
to —V, equations (1.1a-d) turn into equations (1.2a~d), and vice versa.
This result is a logical necessity. It cannot matter which reference frame
we choose to label S and which §’; the same transformation law must
apply. But V is defined as the velocity of S’ relative to S. If we interchange
the labels, the magnitude of the relative velocity is unchanged but its sign
is reversed. (If ground observers see a train moving from left to right at a
given speed, train observers must see the ground moving from right to
left at the same speed.)

8. Because time is absolute in Galilean relativity, phrases like “at that moment”

and “t seconds later” have the same meaning in both frames. When we come to
special relativity, we shall have to exercise great care in using such language.
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Invariance of Distance

Suppose train and ground observers wish to measure the distance between
two telephone poles situated alongside the track. The S positions of the
poles are independent of time:

xn=A x,=B (1.3)

and the distance x, —x; between them is just B — A.
The equations of motion of the poles in S’ are obtained by applying
equation (1.2b) to both x; and x, in (1.3). The result is

x=A-Vt' (1.4a)
xy=B—-Vt' (1.4b)

Both these equations describe bodies moving from right to left at speed V,
as they must.

Suppose train observers measure the position of pole #1 at time t; and
that of pole #2 at time t;. The difference between the two readings is

X,—x|=B—A-V(t,—t]) (1.5)

Inasmuch as the poles are moving in S’, the two position measurements
must be made at the same time if their difference is to yield the cor-
rect distance between the poles. With t;=#, equation (1.5) gives
x5 —x; =B — A, the same as the result obtained in frame S.

This discussion introduces the important concept of invariance. A
quantity is said to be invariant if it has the same value in all frames of
reference. I have shown that the spatial separation between two events
that occur at the same time is invariant in Galilean relativity. The analo-
gous statement in special relativity is not true.

Transformation of Velocity

Suppose a body moves in the x direction at velocity v, as measured in the
ground frame S.” If the body sets out from the origin at t =0, its position
at time ¢t is

x=vt (1.6)
Using equations (1.2a,b) to express x and t in terms of x' and t', we

obtain

9. Throughout this book, velocities of objects are denoted by lowercase letters.
The velocity of one frame relative to another is denoted by a capital letter, usually
V.
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x'+Vt' =vt'
or

x'=(@w-WVt (1.7)

Equation (1.7), like (1.6), expresses motion at constant velocity; the
magnitude of the velocity, which we may call v’, is

v'=0-V (1.8a)
The inverse transformation is obviously
v=0v'+V (1.8b)
With v'=1 m/sec and V=30 m/sec, equation (1.8b) gives v=231
m/sec, the value cited earlier as the “commonsense” result.

If the motion is not confined to the x direction, we can write instead of
equation (1.6)

x=vt (1.9a)
y=v,t (1.9b)
z=uy,t (1.9¢)

where v, v, and v, denote the three components of velocity in S.

When we transform to S’ coordinates as before, the x equation re-
produces the result expressed in equation (1.8a), with a subscript x on v
and v':

vl=v,—V (1.10a)

v
which implies that
v =0, (1.10b)
Similarly, we find that
- (1.10¢)

Only the component of velocity in the direction of the relative motion
between frames changes when we change frames.

In deriving equation (1.8) we assumed that the velocity of the body in
question was constant. If the velocity is changing, the result still holds
provided v and v’ refer to the instantaneous values of velocity (measured
at the same time, of course). This is readily shown with the help of the
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calculus; one simply differentiates equation (1.1) with respect to time. The
same result can be derived by purely algebraic methods.

Combination of Galilean Transformations

Suppose two trains travel along the same track, one at velocity V and the
other at velocity U relative to the ground. Let x, y', and z’ and %", y/",
and z" denote coordinates in frames of reference attached to the first and
second train, respectively. The transformation from (x, y, z, t) to (x', y’,
z', t') is given by equation (1.1); that from (x, y, z, t) to (x", y", 2", t')
must be given by a similar set of equations, with U in place of V:

xX"=x—Ut
y'=y "=z (1.11)
"=t

What about the transformation from the coordinates of the first train
to those of the second? Eliminating (x,y,zt) from equations (1.1) and
(1.11), we find directly

x'—(U- V)t
y' "=z (1.12)
t_l

wktw
I

Equation (1.12) describes another Galilean transformation, with rela-
tive velocity U — V. This is just the velocity of the second train as mea-
sured by observers on the first.

Acceleration

Finally, we examine the transformation properties of acceleration, the rate
of change of velocity. This can be done without any equations.

According to equation (1.8), the velocities of a moving body in S and
S' always differ by the same amount, V. If the velocity measured in S
changes from v, to v, during some time interval, the velocity measured
in S’ changes from v, =V to v,~V; the increment in velocity in S’ is
v,—v,, the same as in S. Since acceleration is defined as change in velocity
per unit time, it has the same value in both frames. Letting a and a’ denote
the accelerations measured in the two frames, we have simply

a'=a (1.13)

Acceleration is invariant in Galilean relativity. We shall see in chapter
4 that in special relativity it transforms in a much more complicated
manner.
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1.5. STELLAR ABERRATION

An interesting application of the velocity transformation law is provided
by stellar aberration, the change in the apparent direction of a star caused
by the earth’s motion around the sun.'” A similar effect can be detected
when driving through a rainstorm: raindrops falling vertically appear to
be moving obliquely.

Let S be a frame of reference in which the sun is at rest and the earth’s
orbit is in the x —y plane. Suppose the orbital velocity V points in the x
direction.

Consider a star that is located on the z axis and is not moving relative to
the sun (fig. 1.4a). The analysis is simplest for this special case, although a
similar result applies to any star.

The velocity components in frame S of a light ray that reaches earth
from the star are

v,=0 (1.14a)
v, =0 (1.14b)
v,=—c¢ (1.14¢)

If the earth were not moving, a telescope pointed in the z direction
would receive light from the star.

We want to find the direction of the light ray in S’, the earth’s rest
frame, which moves at velocity V relative to S. The Galilean velocity
transformation, equation (1.10), gives the velocity components in S’

ve=v,—V=-V (1.15a)
v, =v,=0 (1.15b)
V,=0,= —¢ (1.15¢)

Figure 1.4b shows the direction of the light ray in frame S’. The “ap-
parent” direction of the star (the direction in which our telescope must be
pointed) differs from its “true” direction by a small angle called the aber-
ration angle, a. For the special case under consideration, the aberration
angle is determined by the trigonometric relation
1%
<

(1.16)

!
tan @=—=

10. Aberration is not to be confused with stellar parallax, which is due to the
changing position of the earth as it traverses its orbit. Unlike aberration, parallax
depends on the distance of the star. Even for the nearest stars, the parallax angle
is much smaller than the aberration angle.
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Fig. 1.4. Effect of the earth’s orbital motion on the apparent
position of a star. Sketch (a) is drawn in a frame of reference, S,
in which the star is at rest on the z axis and the earth is moving
in the x direction at velocity V. A light ray from the star, moving
in the negative z direction, reaches earth. Sketch (b) shows the
same ray in frame S’, in which the earth is at rest and the star
is moving. S’ moves at velocity V relative to S. The velocity
components of the star are given by eq. (1.14) in S and by (1.15)
in S’. To see the star, an astronomer must point his telescope at

an angle, a, given by eq. (1.16); this effect is called aberration.

The value of V is known to be 30 km/sec. Equation (1.16) therefore
gives tan @=10"*or a=20" of arc. Although this is a very small angle,
it is readily measurable with a good telescope.
If the earth’s motion were uniform, the aberration effect would be un-
detectable since the “true” direction of the star is unknown. But because
the direction of the earth’s orbital velocity changes regularly, the aberra-
tion effect likewise changes. Six months after the situation shown in the
figure, the earth’s velocity in frame S will have reversed its direction and
in S’ the star will appear to be on the other side of the z axis. Over the
course of a year, the apparent position of the star traces out a circle whose
radius is about 20 seconds of arc; for a star in an arbitrary direction, the
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path is an ellipse. The effect was detected and explained correctly by James
Bradley in 1725.1

The aberration formula can also be derived by analyzing the situation
from the outset in frame S. Between the time the light ray enters the
telescope and the time it reaches the eyepiece, the telescope has moved.
Unless the telescope is tilted, therefore, the light ray will run into the side
of the instrument. The result obtained by such an argument is, of course,
the same as equation (1.16). The advantage of the derivation given here is
that it is readily generalized when we analyze the problem from the point
of view of special relativity in chapter 4.

1.6. Tue CovAariaNCE OF PHysicaL Laws

The principle of relativity, set forth in section 1.3, asserts that the laws of
physics are the same in any two inertial frames of reference. This principle
can be rephrased as a requirement on the mathematical properties of
physical laws.

A typical physical law expresses a mathematical relation between quan-
tities like velocity, acceleration, and force. All these quantities must be
measured in some frame of reference, say, S. Suppose we transform to a
second frame S’ using the Galilean transformation. If the primed quanti-
ties are related in exactly the same way as the corresponding unprimed
ones, the relation is said to be covariant under the transformation. The
principle of relativity demands that all the laws of mechanics be covariant
under a Galilean transformation.

Consider the basic law of mechanics, Newton’s second law:

F=ma (1.17)

Here m is the mass of a body, F is the total external force acting on it, and
a is its acceleration, all measured in some frame S.

Let £’ and a’ be the force and acceleration measured in some other
inertial frame S’. If the second law is covariant, the relation

F'=ma’ (1.18)

must follow from (1.17).
To be perfectly general, we should have written equation (1.18) as

F=m'a (1.19)

11. Bradley used his theory of aberration to deduce a quite accurate value for the
speed of light.
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with m' the mass appropriate to frame S'. In classical mechanics, however,
mass is considered an intrinsic property of a body and must be invariant.
Hence we can put m’ =m.

We showed earlier (eq. [1.13]) that acceleration is invariant under a
Galilean transformation: a’ = a. Hence equation (1.18) follows from (1.17)
if and only if the force F is also invariant,'? that is, if

F'=F (1.20)

One has to investigate case by case whether the forces that exist in
nature satisfy the invariance requirement (eq. [1.20]). For example, the
gravitational attraction between two bodies is given by Newton’s law of
gravity:

my m,

r2

=G

(1.21)

Here m, and m, are the masses of the bodies, r is the distance between
them, and G is a constant. We have already shown that distance is invari-
ant under a Galilean transformation. Hence the gravitational force is in-
deed invariant and the law of gravity is consistent with the principle of
relativity.

The most important example of a force law that is not covariant in
Galilean relativity is electromagnetism. The laws of electricity and magne-
tism were codified in the late nineteenth century in a system known as
Maxwell’s equations. If one assumes that these equations hold in some
frame S and makes a Galilean transformation to another frame S’, the
equations in S’ do not have the same form: Maxwell’s equations are not
covariant under a Galilean transformation. This was very troubling to
Einstein and motivated his quest for a new theory.

There were three logical possibilities:

(i) The relativity principle does not apply to electromagnetism; Max-
well’s equations are valid only in one special frame of reference.

(i) The relativity principle does apply to electromagnetism, but Max-
well’s equations are only approximately correct; they must be replaced by
a more general set of equations that are strictly covariant.

12. If every term in a relation is invariant, as in the present example, the relation
is obviously covariant. This is not a necessary condition, however. Covariance
requires only that both sides of the equation transform in the same way. Suppose,
for example, that under some hypothetical transformation, a' =2a and F' =2F.
Eq. (1.18) would be satisfied and the law would be covariant.
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(iii) The relativity principle applies universally and Maxwell’s equa-
tions are exact, but the Galilean transformation is wrong.

Alternative (i) was the one preferred by nineteenth-century physicists;
the ether frame, discussed in chapter 2, was postulated to be the special
frame in which Maxwell’s equations hold. Einstein rejected that view and
boldly asserted that alternative (iii), which a priori seems the least plausi-
ble, is in fact correct. This assumption led him to special relativity.

1.7. Tuue CONSERVATION OF MOMENTUM

As a final application of Galilean relativity, we examine the law of conser-
vation of momentum and show that it is covariant.

Newton defined momentum (which he called “quantity of motion”) as
the product of mass and velocity. The modern symbol for momentum is
p; thus p=mv.

Momentum is a vector quantity: it has direction as well as magnitude.
By definition, the momentum of a body points in the same direction as
its velocity. The components of momentum along a given set of axes are

Py =Mmu, p,=mu, p.=muv, (1.22)

Any of these components can be positive or negative.

An important law in classical mechanics is the conservation of momen-
tum: the total momentum of an isolated system remains constant. The
law is a consequence of Newton’s second and third laws.

The most common application of the conservation of momentum is to
problems that involve collisions. When two bodies collide, the momentum
of each body changes as a consequence of the forces exerted on it by the
other. The total momentum of the system, however, is the same after
the collision as before. If the collision involves motion in more than one
dimension, each component of momentum is separately conserved.

Figure 1.5 illustrates the conservation of momentum in collisions be-
tween bodies of equal mass m. In each case body A, moving at velocity v
in the x direction, collides with body B, which is initially at rest. The total
momentum of the system before the collision is mv. In collision (a), body
A comes to rest and B moves at velocity v after the collision in the direc-
tion of A’s initial motion. The final momentum is mv, in accord with the
conservation law.

Figure 1.5b shows a different possible outcome: A and B stick together,
and both move at velocity v/2 after the collision. The final momentum of
each body is mv/2, and the total is again mv; momentum is conserved.
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Initial Velocities: A B

P o
Vv

Final Velocities:

a) . L
A B VY
b)
Ae—p V/2
Be—>vp
c) A

Fig. 1.5. The conservation of momentum according to Gali-
lean relativity. Shown are three collisions, in each of which
momentum is conserved. The initial state in each collision is
that shown in the top sketch: body A, moving in the x direc-
tion, collides with body B, initially at rest. The bodies have
equal masses. After collision (a), A is at rest and B moves with
A’s original velocity, v. After collision (b), each body moves
with velocity v/2 in the x direction. After collision (c), each
body has some y motion as well as some x motion. The y com-
ponents of velocity (and of momentum) are equal and opposite;
thus the total y momentum is zero.

Figure 1.5¢ shows yet another possible outcome. In this case, each body
has some y velocity and therefore some y momentum after the collision.
Since the initial y momentum was zero, the total y momentum after the
collision must also be zero. The y momenta of the emerging bodies must
have equal magnitudes and opposite signs; since the masses are equal, the
y velocities must likewise be equal and opposite.

As these examples demonstrate, conservation of momentum does not
determine the outcome of a collision. If we know only the initial velocities
of the colliding bodies, we cannot predict whether the final velocities are
those shown in (a), in (b), in (c), or something different still.> The out-
come depends on data that have not been specified, such as the elastic

13. The conservation law (see eq. [1.23]) is one equation with two unknowns (the
two final velocities). It has an infinite number of solutions.
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properties of the bodies and whether the collision is head-on or at a glanc-
ing angle. A head-on collision between two billiard balls would lead to
outcome (a), whereas a glancing collision between the same billiard balls
could lead to outcome (c). Colliding lumps of putty are likely to stick
together, outcome (b).

Consider a collision between two bodies, A and B, whose motion is
confined to one dimension. Conservation of momentum is expressed by
the relation

M4+ mgvg=mcv-+mpop (1.23)

where C and D refer to the bodies that emerge from the collision. C and
D might be the same as A and B, but they might be different. Such “re-
arrangement” collisions are of particular interest in nuclear physics.

To prove that momentum conservation is a covariant law, we assume
that equation (1.23) holds in some inertial frame S and show that the
same relation holds also in any other inertial frame S’.

The velocity of each body in S’ is related to its velocity in S by the
Galilean velocity transformation, equation (1.7):

va=uu+V, vg=1v4+V, andsoon (1.24)

where, as usual, V is the speed of frame S’ relative to S.
Using equation (1.24) we can express each term in equation (1.23) in
terms of velocities measured in S’. The result is

Ma(va+ V) +mp(og+ VY =m(vl+ V) +mp(v)+ V) (1.25)
Expanding and grouping terms, we obtain
MUy + Mg =mvt+mpvp+V(ime+mp—my—mg)  (1.26)

Equation (1.26) represents momentum conservation in frame S’, pro-
vided the last term on the right side vanishes. Since V is not zero, this
requires that

Me+mp=m,+myg (1.27)

Condition (1.27), which must be satisfied if momentum conservation
is to be a covariant law, expresses the conservation of mass. In classical
mechanics, mass can be neither created nor destroyed; equation (1.27)
must be valid. If, as a result of a collision, the colliding bodies exchange
mass or even break up into many fragments, the total mass of the emerg-
ing bodies must be exactly the same as the total mass of the bodies that
collided. As we shall see, that statement is not true in special relativity.
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The proof of covariance is readily extended to collisions in more than
one dimension. Each component of momentum can be treated separately.
The preceding analysis shows that if x momentum is conserved in S, it is
conserved as well in S’. (V, the relative velocity of the two frames, is
assumed to be in the x direction.) But according to equation (1.10), the y
velocity of each body is the same in §” as in S. Since momentum is veloc-
ity times mass, it follows that the y momentum of each body is likewise
the same in both frames. Hence if y momentum is conserved in frame S,
it is likewise conserved in S'. The same is true of z momentum.

In summary, the law of conservation of momentum, with momentum
defined as mass times velocity, is covariant under a Galilean transforma-
tion, provided that mass is conserved. We shall see in chapter 7 that in
special relativity, momentum must be redefined if the conservation law is
to be covariant.

PROBLEMS

1.1. A train moves at a constant speed. A stone on the train is released from rest.
(a) Using the principle of relativity, describe the motion of the stone as seen
by observers on the train.
(b) Using the Galilean transformation, describe the motion of the stone as seen
by observers on the ground. Draw a sketch.

1.2. This problem deals quantitatively with the experiment of problem 1.1. Let S
denote the ground frame of reference and S’ the train’s rest frame. Let the speed
of the train, as measured by ground observers, be 30 m/sec in the x direction, and
suppose the stone is released at t' =0 at the point x' =y’ =0, z'=7.2 m.

(a) Write the equations that describe the stone’s motion in frame S’. That is,
give x’, y', and z' as functions of t'. (Note: A body starting from rest and moving
with constant acceleration g travels a distance /2 gt* in time t. Gravity produces a
constant acceleration whose magnitude is approximately 10 m/sec/sec.)

(b) Use the Galilean transformation to write the equations that describe the
position of the stone in frame S. Plot the stone’s position at intervals of 0.2 sec,
and sketch the curve that describes its trajectory in frame S. What curve is this?

(c) The velocity acquired by a body starting from rest with acceleration g is gt.
Write the equations that describe the three components of the stone’s velocity in
S’, and use the Galilean velocity transformation to find the velocity components
in S.

(d) Find the magnitude of the stone’s speed at t =1 sec in each frame.

1.3. A jetliner has an air speed of 500 mph. A 200-mph wind is blowing from
west to east.

(a) The pilot heads due north. In what direction does the plane fly, and what
is its ground speed? (Hint: Define a frame of reference S’ that moves with the
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wind. In S’ there is no wind; hence the plane always moves in the direction it is
headed, at 500 mph. Use the velocity transformation to find the components of
the plane’s velocity in the ground frame.)

(b) In what direction should the pilot head in order to fly due north? What is
the plane’s ground speed in this case?

1.4. A river is 20 m wide; a 1 m/sec current flows downstream. Two swimmers,
A and B, arrange a race. A is to swim to a point 20 m downstream and back while
B swims straight across the river and back. Each can swim at 2 m/sec in still water.
(a) In what direction should B head in order to swim straight across? [llustrate
with a sketch. (See the hint for the preceding problem.)
(b) Who wins the race, and by how much time?

1.5. An elastic collision is one in which kinetic energy as well as momentum is
conserved, that is, the total kinetic energy after the collision is equal to the total
initial kinetic energy. The Newtonian definition of kinetic energy is K =12 mv2,

Consider the collision shown in fig. 1.5a. The mass of each body is 2 kg; the
initial velocity of body A is 0.6 m/sec. In frame S, the frame in which the figure
is drawn, the collision is obviously elastic. (The initial kinetic energy of B and the
final kinetic energy of A are both zero; in the collision A’s momentum and kinetic
energy are simply transferred to B.)

Analyze the same collision in a frame S’ that moves to the right at 0.2 m/sec
relative to S. Find the kinetic energy of each body before and after the collision
and verify that the collision as seen in S’ is elastic.

1.6. The object of this problem is to investigate whether, as suggested by the
result of problem 1.5, the definition of an elastic collision is invariant under a
Galilean transformation.

Consider the general one-dimensional collision discussed in section 1.7, in
which bodies A and B collide and bodies C and D emerge. (C and D might be the
same as A and B, or they might be different.) Assume that momentum is con-
served, that is, eq. (1.23) is satisfied.

(a) Write the equation that expresses the conservation of kinetic energy in
frame S. Now transform to a frame S’ that moves at velocity V relative to S. Show
that kinetic energy is conserved in S’, provided mass conservation is satisfied.

(b) Suppose the collision is inelastic: the total kinetic energy of C and D in
frame S differs from the total kinetic energy of A and B by an amount Q. Is the
value of Q invariant? Justify your answer.

1.7. Raindrops are falling vertically at 2 m/sec. A person is running horizontally
at 3 m/sec. At what angle to the vertical should she hold her umbrella for maxi-
mum effectiveness? (Consider the path of the raindrops in the runner’s rest
frame.)

1.8. Analyze the stellar aberration effect for a star that lies in the plane of the
earth’s orbit. How does the magnitude of the aberration angle vary as the earth
traverses its orbit?



