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As you should know,1 the linear regression model is normally characterized with the 

following equation:

Consider this equation and try to answer the following questions:

• What does the yi represent? The β? The x? (Which often include 

subscripts i—do you remember why?) The εi?

• How do we judge the size and direction of the β?

• How do we decide which xs are important and which are not? What are some 

limitations in trying to make this decision?

• Given this equation, what is the diff erence between prediction and explanation?

• What is this model best suited for?

• What role does the mean of y play in linear regression models?

• Can the model provide causal explanations of social phenomena?

• What are some of its limitations for studying social phenomena and causal 

processes?

1. This book assumes familiarity with linear regression models that are estimated with ordi-
nary least squares (OLS). There are many books that provide excellent overviews of the model and 
its assumptions (e.g., Fox, 2016; Hoff mann and Shafer, 2015; Weisberg, 2013).
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Researchers often use an estimation technique known as ordinary least squares (OLS) to 

estimate this regression model. OLS seeks to minimize the following:

The SSE is the sum of squared errors, with the observed y and the predicted y (y-hat) uti-

lized in the equation. In an OLS regression model2 that includes only one explanatory vari-

able, the slope (β1) is estimated with the following least squares equation:

Notice that the variance of x appears in the denominator, whereas the numerator is part 

of the formula for the covariance (cov(x,y)). Given the slope, the intercept is simply

Estimation is more complicated in a multiple OLS regression model. If you recall matrix 

notation, you may have seen this model represented as

The letters are bolded to represent vectors and matrices, with Y representing a vector of 

values for the outcome variable, X indicating a matrix of explanatory variables, and β repre-

senting a vector of regression coeffi  cients, including the intercept (β0) and slopes (βi). The 

OLS regression coeffi  cients may be estimated with the following equation:

A vector of residuals is then given by

Often, the residuals are represented as e to distinguish them from the errors, ε. You 

should recall that residuals play an important role in linear regression analysis. Various 

types of residuals also have a key role throughout this book. Assuming a sample and that the 

2. The term “OLS regression model” is simply a shorthand way of indicating that the linear 
regression model is estimated with OLS. As shown in subsequent chapters, another common esti-
mation technique is maximum likelihood estimation (MLE). Thus, an ML regression model refers 
to a model that is estimated using MLE.
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model includes an intercept, some of the properties of the OLS residuals are (a) they sum to 

zero (Σεi = 0), (b) they have a mean of zero (E[ε] = 0), and (c) they are uncorrelated with the 

predicted values of the outcome variable .

Analysts often wish to infer something about a target population from the sample. Thus, 

you may recall that the standard error (SE) of the slope is needed since, in conjunction with 

the slope, it allows estimation of the t-values and the p-values. These provide the basis for 

inference in linear regression modeling. The standard error of the slope in a simple OLS 

regression model is computed as

Assuming we have a multiple OLS regression model, as shown earlier, the standard error 

formula requires modifi cation:

Consider some of the components in this equation and how they might aff ect the stand-

ard errors. The matrix formulation of the standard errors is based on deriving the variance-

covariance matrix of the OLS estimator. A simplifi ed version of its computation is

Note that the numerator in the right-hand-side equation is simply the SSE since 

. The right-hand-side equation is called the residual variance or the mean 

squared error (MSE). You may recognize that it provides an estimate—albeit biased, but 

consistent—of the variance of the errors. The square roots of the diagonal elements of the vari-

ance–covariance matrix yield the standard errors of the regression coeffi  cients. As reviewed 

subsequently, several of the assumptions of the OLS regression model are related to the accu-

racy of the standard errors and thus the inferences that can be made to the target population.

OLS results in the smallest value of the SSE, if some of the specifi c assumptions of the 

model discussed later are satisfi ed. If this is the case, the model is said to result in the best 

linear unbiased estimators (BLUE) (Weisberg, 2013). It is important to note that this says best 

linear, so we are concerned here with linear estimators (there are also nonlinear estimators). 

In any event, BLUE implies that the estimators, such as the slopes, from an OLS regression 

model are unbiased, effi  cient, and consistent. But what does it mean to say they have these 

qualities? Unbiasedness refers to whether the mean of the sampling distribution of a statistic 

equals the parameter it is meant to estimate in the population. For example, is the slope esti-

mated from the sample a good estimate of an analogous slope in the population? Even though 
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we rarely have more than one sample, simulation studies indicate that the mean of the sample 

slopes from the OLS regression model (if we could take many samples from a population), on 

average, equals the population slope (see Appendix B). Effi  ciency refers to how stable a statis-

tic is from one sample to the next. A more effi  cient statistic has less variability from sample 

to sample; it is therefore, on average, more precise. Again, if some of the assumptions dis-

cussed later are satisfi ed, OLS-derived estimates are more effi  cient—they have a smaller sam-

pling variance—than those that might be estimated using other techniques. Finally, consist-

ency refers to whether the statistic converges to the population parameter as the sample size 

increases. Thus, it combines characteristics of both unbiasedness and effi  ciency.

A standard way to consider these qualities is with a target from, say, a dartboard. As 

shown in fi gure 1.1, estimators from a statistical model can be imagined as trying to hit a 

target in the population known as a parameter. Estimators can be unbiased and effi  cient, 

biased but effi  cient, unbiased but ineffi  cient, or neither. Hopefully, it is clear why having 

these properties with OLS regression models is valuable.

You may recall that we wish to assess not just the slopes and standard errors, but also 

whether the OLS regression model provides a good “fi t” to the data. This is one way of ask-

ing whether the model does a good job of predicting the outcome variable. Given your knowl-

edge of OLS regression, what are some ways we may judge whether the model is a “good fi t”? 

Recall that we typically examine and evaluate the R2, adjusted R2, and root mean squared 

error (RMSE). How is the R2 value computed? Why do some analysts prefer the adjusted R2? 

What is the RMSE and why is it useful?

 A BRIEF INTRODUCTION TO STATA3

In this presentation, we use the statistical program Stata to estimate regression models 

(www.stata.com). Stata is a powerful and user-friendly program that has become quite popu-

lar in the social and behavioral sciences. It is more fl exible and powerful than SPSS and, in 

3. There are many excellent introductions and tutorials on how to use Stata. A good place to 
start is Stata’s YouTube channel (https://www.youtube.com/user/statacorp) and the following web-
site: http://www.ats.ucla.edu/stat/stata/. This website also includes links to web books that 
demonstrate how to estimate OLS regression models with Stata. For a more thorough treatment of
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my judgment, much more user-friendly than SAS or R, its major competitors. Stata’s default 

style consists of four windows: a command window where we type the commands; a results 

window that shows output; a variables window that shows the variables in the data fi le; and 

a review window that keeps track of what we have entered in the command window. If we 

click on a line in the review window, it shows up in the command window (so we don’t have 

to retype commands). If we click on a variable in the variables window, it shows up in the 

command window, so we do not have to type variable names if we do not want to.

It is always a good idea to save the Stata commands and output by opening a log fi le. This 

can be done by clicking the brown icon in the upper left-hand corner (Windows) or the 

upper middle portion (Mac) of Stata or by typing the following in the command window:

log using “regression.log” * the name is arbitrary

This saves a log fi le to the local drive listed at the bottom of the Stata screen. To suspend the 

log fi le, type log off in the command window; or to close it completely type log 
close.

It is also a good idea to learn to use .do fi les. These are similar to SPSS syntax fi les or R 

script fi les in that we write—and, importantly, save—commands in them and then ask Stata 

to execute the commands. Stata has a do-editor that is simply a notepad screen for typing 

commands. The Stata icon that looks like a small pad of paper opens the editor. But we can 

also use Notepad++, TextEdit, WordPad, Vim, or any other text-editing program that allows 

us to save text fi les. I recommend that you use the handle .do when saving these fi les, 

though. In the do-editor, clicking the run or do icon feeds the commands to Stata.

 AN OLS REGRESSION MODEL IN STATA

We will now open a Stata data fi le and estimate an OLS regression model. This allows us to 

examine Stata’s commands and output and provide guidance on how to test the assumptions 

of the model. A good source of additional instructions is the Regression with Stata web book 

found at http://www.ats.ucla.edu/stat/stata/webbooks/reg. Stata’s help menu (e.g., type 

help regress in the command window) is also very useful.

To begin, open the GSS data fi le (gss.dta). This is a subset of data from the biennial Gen-

eral Social Survey (see www3.norc.org/GSS+Website). You may use Stata’s drop-down menu 

to open the fi le. Review the content of the Variables window to become familiar with the fi le 

and its contents. A convenient command for determining the coding of variables in Stata is 

called codebook. For example, typing and entering codebook sei returns the label and 

some information about this variable, including its mean, standard deviation, and some per-

centiles. Other frequently used commands for examining data sets and variables include 

using Stata for this purpose, see Hoff mann and Shafer (2015). For more information about using 
Stata to conduct quantitative research, see Long (2009) and Kohler and Kreuter (2012).

http://www3.norc.org/GSS+Website
http://www.ats.ucla.edu/stat/stata/webbooks/reg
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describe, table, tabulate, summarize, graph box (boxplot), graph dot-
plot (dot plot), stem (stem-and-leaf plot), hist (histogram), and kdensity (kernel den-

sity plot) (see the Chapter Resources at the end of this chapter). Stata’s help menu provides 

detailed descriptions of each. As shown later, several of these come in handy when we wish 

to examine residuals and predicted values from regression models.

Before estimating an OLS regression model, let’s check the distribution of sei with a ker-

nel density graph (which is also called a smoothed histogram). The Stata command that appears 

below opens a new window that provides the graph in fi gure 1.2. If sei follows a normal dis-

tribution, it should look like a bell-shaped curve. Although it appears to be normally distrib-

uted until it hits about 50, it has a rather long tail that is suggestive of positive skewness. We 

investigate some implications of this skewness later.

kdensity sei

To estimate an OLS regression model in Stata, we may use the regress command.4 The 

Stata code in Example 1.1 estimates an OLS regression model that predicts sei based on sex 

(the variable is labeled female). The term beta that follows the comma requests that Stata 

4. If you wish to see detailed information about how this command operates, including its 
many subcommands and technical details about how it estimates the model, select the [R] regress 
link from the regress help page. Assuming that Stata is found locally on your computer, this 
brings up the section on the regress command in the Stata reference manual.

0
.0

1
.0

2
.0

3
.0

4
D

en
si

ty

20 40 60 80 100

Respondent socioeconomic index

Kernel Density Estimate

FIGURE 1.2



Review of Linear Regression Models    7

furnish standardized regression coeffi  cients, or beta weights, as part of the output. You may 

recall that beta weights are based on the following equation:

Whereas unstandardized regression coeffi  cients (the Coef. column in Stata) are inter-

preted in the original units of the explanatory and outcome variables, beta weights are inter-

preted in terms of z-scores. Of course, the z-scores of the variables must be interpretable, 

which is not always the case (think of a categorical variable like female).

Example 1.1

regress sei female, beta

The results should look familiar. There is an analysis of variance (ANOVA) table in the top-

left panel, some model fi t statistics in the top-right panel, and a coeffi  cients table in the bot-

tom panel. For instance, the R2 for this model is 0.002, which could be computed from the 

ANOVA table using the regression (Model) sum of squares and the total sum of squares 

(SS(sei)): 2,002/1,002,219 = 0.002. Recall that the R2 is the squared value of the correlation 

between the predicted values and the observed values of the outcome variable. The F-value 

is computed as MSReg/MSResid or 2,002/360 = 5.56, with degrees of freedom equal to k and 

{n − k − 1}. The adjusted R2 and the RMSE5—two useful fi t statistics—are also provided.

The output presents coeffi  cients (including one for the intercept or constant), standard 

errors, t-values, p-values, and, as we requested, beta weights. Recall that the unstandardized 

regression coeffi  cient for a binary variable like female is simply the diff erence in the expected 

means of the outcome variable for the two groups. Moreover, the intercept is the predicted 

mean for the reference group if the binary variable is coded as {0, 1}. Because female is coded 

5. Recall that the RMSE is simply  or the estimate σe. It may also be characterized as the 
standard deviation of the residuals.
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as {0 = male and 1 = female}, the model predicts that mean sei among males is 48.79 and 

mean sei among females is 48.79 − 1.70 = 47.09. The p-value of 0.018 indicates that, assum-

ing we were to draw many samples from the target population, we would expect to fi nd a 

slope of −1.70 or one farther from zero about 18 times out of every 1,000 samples.6

The beta weight is not useful in this situation because a one z-score shift in female makes 

little sense. Perhaps it will become more useful as we include other explanatory variables. In 

the next example, add years of education, race/ethnicity (labeled nonwhite, with 0 = white 

and 1 = nonwhite), and parents’ socioeconomic status (pasei) to the model.

The results shown in Example 1.2 suggest that one or more of the variables added to the 

model may explain the association between female and socioeconomic status (or does it?—

note the sample sizes of the two models). And we now see that education, nonwhite, and par-

ents’ status are statistically signifi cant predictors of socioeconomic status. Whether they are 

important predictors or have a causal impact is another matter, however.

Example 1.2

regress sei female educate nonwhite pasei, beta

The R2 increased from 0.002 to 0.353, which appears to be quite a jump. Stata’s test com-

mand provides a multiple partial (nested) F-test to determine if the addition of these varia-

bles leads to a statistically signifi cant increase in the R2. Simply type test and then list the 

additional explanatory variables that have been added to produce the second model. The 

result of this test with the three additional variables is an F-value of 406.4 (3, 2226 df ) and 

6. Consider this statement carefully: we assume what would happen if we were to draw many 
samples and compute a slope for each. As suggested earlier, this rarely happens in real-world appli-
cations. Given this situation, as well as other limitations discussed by statisticians, the p-value and 
its inferential framework are often criticized (e.g., Gelman, 2015; Hubbard and Lindsay, 2008). 
Although this is an important issue, we do not explore it here.
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a p-value of less than 0.0001. Given the diff erent sample sizes, do you recommend using the 

nested F-test approach for comparing the models? How would you estimate the eff ect of 

female in this model?7

Some interpretations from the model in Example 1.2 include the following:

• Adjusting for the eff ects of sex, race/ethnicity, and parents’ sei, each 1-year 

increase in education is associated with a 3.72 unit increase in socioeconomic 

status.

• Adjusting for the eff ects of sex, race/ethnicity, and parents’ sei, each one z-score 

increase in education is associated with a 0.556 z-score increase in socioeco-

nomic status.

• Adjusting for the eff ects of sex, education, and race/ethnicity, each one-unit 

increase in parents’ sei score is associated with a 0.077 unit increase in socio-

economic status.

It is useful to graph the results of regression models in some way. This provides a more 

informed view of the association between explanatory variables and the outcome variable 

than simply interpreting slope coeffi  cients and considering p-values to judge eff ect sizes. For 

instance, fi gure 1.3 provides a visual depiction of the linear association between years of edu-

cation and sei as predicted by the regression model. Stata’s margins and marginsplot 

post-estimation commands are used to “adjust” the other variables by setting them at par-

ticular levels, including placing pasei at its mean. The vertical bars are 95% confi dence inter-

vals (CIs). What does the graph suggest?

qui margins, at(educate=(10 12 14 16 18 20) 

 female=0 nonwhite=0) atmeans * qui suppresses the output

marginsplot

Although it should be obvious, note that the graph (by design) shows a linear association. 

This is because the OLS regression model assumes a linear, or straight line, relationship 

between education and socioeconomic status (although this assumption can be relaxed). 

If we know little about their association, then relying on a linear relationship seems 

7. Consider the diff erent sample sizes. Why did the sample size decrease? What variables 
aff ected this decrease? How can you ensure that the same sample is used in both analyses? An 
essential task in regression and other statistical modeling eff orts is to always look closely at the sam-
ple size and whether it changes from one model to the next. As a hint about how to approach this 
issue, look up Stata’s e(sample) option. Use it to estimate the eff ect of female in the reduced sam-
ple. Did we reach the wrong initial conclusion regarding the association between female and sei? 
Why or why not? Although we do not cover missing data and their implications in this chapter (but 
see Appendix C), it is an essential topic for statistical analysts.
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reasonable. But it is important to keep in mind that many associations are not linear. Think 

about what this means given how popular linear regression is in many scientifi c 

disciplines.

 CHECKING THE ASSUMPTIONS OF THE OLS REGRESSION MODEL

Stata provides many convenient tools for checking the assumptions of OLS regression mod-

els. Recall that some of these assumptions are important because, if they are satisfi ed, we 

can be confi dent that the OLS regression coeffi  cients are BLUE. We now briefl y examine the 

assumptions and learn about some ways to examine them using Stata. For a comprehensive 

review, see Fox (2016).

1. Independence

To be precise, this assumption is that the errors from one observation are independent of the errors 

in other observations (cov(εi, εj) = 0). However, this typically is not the case when the sampling 

strategy was not randomly driven and there is nesting or clustering among the observations. 

It is quite common in the social and behavioral sciences given how often surveys are con-

ducted that use clustered or multistage sampling designs. If not taken into account, clustering 

tends to lead to underestimated OLS standard errors (see Chapter 9). Stata has a host of rou-

tines for dealing with complex sampling designs and clustering. In fact, there is a cluster 

subcommand (this means it appears after the main command, usually following a comma) 
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that may be used to adjust the standard errors for clustering: regress y x1 x2, cluster(cluster 

variable). We do not pursue this topic any further here, but see Chapters 7 and 8.

2. Homoscedasticity (“Same Scatter”)

This involves the assumption that the variance of the error terms is constant for all combina-

tions of the x. If this is violated—in other words, if there are heteroscedastic errors—then the 

OLS standard errors are ineffi  cient. Recall that the standard error equation shown earlier 

included in its denominator the sums of squares for the x variable. This value increases, per-

haps substantially, in the presence of heteroscedasticity, thus leading to smaller standard 

errors, on average. How might it aff ect one’s conclusions about the model’s coeffi  cients?

There are several options available to test for heteroscedasticity, some of which examine 

the residuals from the model. For example, a simple way to build a residual-by-predicted plot 

is with Stata’s rvfplot (residuals vs. fi tted plot) post-estimation command (type help 
regress postestimation for a thorough description of other options). Example 1.3 

shows the Stata code to execute this command and fi gure 1.4 furnishes the graph. Recall 

that we look for a funnel shape in this graph as evidence of heteroscedasticity (other patterns 

might also provide evidence). Although no funnel exists, there is a peculiar pattern. Some 

analysts prefer to graph the studentized residuals versus the standardized predicted values. 

The second part of Example 1.3 provides a set of commands for computing and graphing 

these predictions. Notice that we use a Stata command called egen to create a variable that 

consists of the standardized values (z-scores) of the predicted values.
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Example 1.3

rvfplot * after Example 1.2

predict rstudent, rstudent * studentized residuals

predict pred, xb * predicted values

egen zpred = std(pred) * z-scores of predicted values

twoway scatter rstudent zpred || 

 lowess rstudent zpred

The last command in Example 1.3 creates a scatter plot and overlays a lowess (locally weighted 

regression) fi t line. The graph (not shown) identifi es the same peculiar pattern. Although it 

might not be clearly indicative of heteroscedasticity, this is an unusual situation that should 

be examined further.

Stata also off ers several numeric tests for assessing heteroscedasticity. These include 

hettest (the Breusch–Pagan test [Breusch and Pagan, 1979]) and White’s (1980) test, 

which is based on the information matrix (imtest).

Example 1.4

hettest * after Example 1.2

estat imtest, white

 Source chi2 df p

 Heteroskedasticity 60.79 12 0.0000
 Skewness 172.28 4 0.0000
 Kurtosis 39.23 1 0.0000

 Total 272.30 17 0.0000

Both tests shown in Example 1.4 indicate that there is heteroscedasticity in the model (the 

null hypotheses are that the errors are homoscedastic). These tests are quite sensitive to vio-

lations of the normality of the residuals, so we should reexamine this issue before deciding 

what to do.

We may also estimate Glejser’s (1969) test by saving the residuals, taking their absolute 

values, and reestimating the model but predicting these values rather than sei. Example 1.5 

furnishes this test.
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Example 1.5

* after Example 1.3

gen absresid = abs(rstudent)

regress absresid female educate nonwhite pasei

We can now conclude with some certainty that education is involved in a heteroscedasticity 

issue since it appears to have a substantial association with this form of the residuals.

But what do we do in this situation? Some experts suggest using weighted least squares 

(WLS) estimation (Chatterjee and Hadi, 2006, Chapter 7). Since we have evidence that edu-

cation is implicated in the problem, we may wish to explore further using a WLS model with 

some transformation of education as a weighting factor. It is much simpler, though, to rely 

on the Huber–White sandwich estimator to compute robust standard errors (Fox, 2016, 

Chapter 12). This is a simple maneuver in Stata. By adding the subcommand robust after 

the regress command, Stata provides the robust standard errors.

Example 1.6

regress sei female educate nonwhite pasei, robust
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Notice that the standard errors in the model in Example 1.6 are generally larger than in the 

model displayed in Example 1.2. Since we are most concerned with education, it is interest-

ing that its coeffi  cient’s standard error increased from about 0.123 to 0.134, even though its 

p-value indicates that it remains statistically signifi cant. Thus, even in the presence of het-

eroscedasticity, education appears to be a relevant predictor of sei in these data (although 

other evidence is needed to substantiate this conclusion).

Another popular option for attenuating the eff ects of heteroscedasticity is to estimate boot-

strapped standard errors (consider help bootstrap). This is a resampling technique that 

takes repeated samples, with replacement, from the sample data set and calculates the model 

for each of these samples. It then uses this information to estimate a sampling distribution of 

the coeffi  cients from the model, including the standard errors (Guan, 2003). This usually 

results in estimates that are aff ected less by heteroscedacity or other problematic issues.

However, it is critical to remember that issues such as heteroscedasticity do not neces-

sarily signal that there is something wrong with the data or the model. It is important to 

think carefully about why there is heteroscedasticity or other seemingly nettlesome issues. 

Considering why these issues occur may lead to a better understanding of the associations 

that interest us. Moreover, there might be additional issues directly or indirectly involving 

heteroscedasticity, so we will explore some more topics after reviewing the other assump-

tions—as well as a few other characteristics—of the OLS regression model.

3. Autocorrelation

This assumption states that there is no autocorrelation among the errors. In other words, they 

are not correlated based on time or space. Autocorrelation is related to the independence 

assumption: when errors are correlated, they are not independent. Thus, the main conse-

quence of violating this assumption is underestimated standard errors. Graphs of the resid-

uals across time (or space in spatial regression models) are typically used as a diagnostic 

tool. Stata also off ers a Durbin–Watson test that is invoked after a regression model (estat 
dwatson) and a whole range of models designed to adjust time-series and longitudinal 

models for the presence of autocorrelation. Two useful regression models are Prais–Winsten 

and Cochran–Orcutt regression (Wooldridge, 2010), which are implemented in Stata with 

the command prais. There are also tools available for spatial autocorrelation: errors that 

are correlated across space. Chapter 8 reviews regression models that are appropriate for lon-

gitudinal data, which often experience autocorrelation.

4. Collinearity

There is no perfect collinearity among the predictors. The model cannot be estimated when 

this occurs. It should be noted, though, that problems can arise with standard errors and 

regression coeffi  cients even when there is high collinearity. Recall that the standard error 

formula shown earlier included the tolerance  in the denominator. This, you may 

remember, is based on regressing each explanatory variable on all the other explanatory vari-
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ables. If there is perfect collinearity, then at least one of these R2 values is 1, and the tolerance 

is 0. Thus, the standard error for this particular coeffi  cient cannot be estimated. However, 

even very small tolerance values may lead to odd and unstable results.

The Stata post-estimation command vif provides variance infl ation factors (VIFs) for an 

OLS regression model. For example, if we follow Example 1.2 by typing vif, Stata returns 

the next set of results.

vif * after example 1.2

The values in the table show no evidence of multicollinearity. But what might demonstrate 

evidence of a potential problem? Fox (2016) suggests examining the square root of the VIFs 

and cautions that the estimates are substantially aff ected when this value is between 2 and 

3. However, some researchers point out that other aspects of the model are just as conse-

quential as collinearity for getting stable results (O’Brien, 2007). In any event, there are 

some downloadable commands in Stata that provide other collinearity diagnostics, such as 

condition indices, that are called collin and coldiag2. Typing and entering fi ndit 
coldiag2 in the command line searches for locations that have this command and provide 

instructions about how to download it.

Assumptions 1–4 are the most consequential for the OLS regression model in terms of 

the earlier discussion of unbiasedness, effi  ciency, and consistency. According to the Gauss–

Markov theorem, when these assumptions are satisfi ed, the OLS estimates off er the BLUE 

among the class of linear estimators (see Lindgren, 1993, 510). No other linear estimator has 

lower bias, or is more precise, on average, than OLS estimates. Nevertheless, there are some 

additional assumptions that are important for this model.

5. Error Distribution

The errors are normally distributed with a mean of zero and constant variance. This statement 

has three parts. The fi rst part is also known as the normality assumption. If the second part 

(E(εi) = 0) is violated, the intercept is biased. The last part of this statement is simply another 

way of stating Assumption 2. Thus, the key issue here is whether the errors follow a normal 

distribution. If there is non-normality, we may get misleading regression coeffi  cients and 

standard errors. Nevertheless, some studies point out that even when the errors are not nor-

mally distributed, but large samples are utilized, OLS regression models yield unbiased and 
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effi  cient coeffi  cients (Lumley et al., 2002), with normally distributed intercepts and 

slopes (Weisberg, 2013). However, the degree of non-normality can make a diff erence (see 

Appendix B).

Saving the residuals and checking their distribution with a kernel density plot, a histo-

gram with a normal curve overlaid, or with q–q plots and p–p plots, is the most straightfor-

ward method of testing this assumption. Stata has a qnorm and a pnorm command avail-

able for these. The pnorm graph is sensitive to non-normality in the middle range of data 

and the qnorm graph is sensitive to non-normality near the tails. For instance, after estimat-

ing the model in Example 1.2, save the studentized residuals and subject them to a kernel 

density plot, a qnorm plot, and a pnorm plot.

Figures 1.5 and 1.6 provide only a small kernel (pun intended) of evidence that there is 

non-normality in the tails. But fi gures 1.5 and 1.7 suggest there is a modest amount of non-

normality near the middle of the distribution. Consider the variation from normality in the 

0–2 range of the kernel density plot.

predict rstudent, rstudent * after Example 1.2

kdensity rstudent * try it with and without, normal

We examine some issues involving distributional problems later in the chapter.

qnorm rstudent

pnorm rstudent
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6. Linearity

The mean value of y for each specifi c combination of the x is a linear function of the x. A simple 

way to understand this assumption is to consider that researchers should use linear estima-

tors, like OLS, to estimate linear associations. If the association is not linear, then they 

should use a nonlinear approach or else there is a risk of obtaining misleading predictions.8 

For example, imagine if an x variable and y variable have a U-shaped relationship: the slope 

from an OLS regression model is zero, even though there is certainly an association between 

them.

In Stata, we may test this assumption by estimating partial residual plots or residual-by-

predicted plots and looking for nonlinear patterns. For example, use the post-estimation 

command below to view a partial residual plot given in fi gure 1.8. This is also called a com-

ponent plus residual plot. Adding a lowess line makes it easier to detect nonlinearities in the 

associations. It appears that there are two linear associations between the residuals and edu-

cation (above and below 10 or 11 years). These might be a concern or suggest some modifi ca-

tions to the model. We consider this issue in a bit more detail later.

cprplot educate, lowess * after Example 1.2

8. One way to modify the OLS regression model to allow for a particular type of nonlinear asso-
ciation is presented later in the chapter.
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7. Specifi cation

For each explanatory variable, the correlation with the error term is zero. If not, then there 

is specifi cation error in the model. This is also known as misspecifi cation bias. Omitted 

variable bias is one type: an explanatory variable that should be included in the model is 

not. Endogeneity bias is another type. Recall that a property of the residuals is that they 

are uncorrelated with the predicted values of the outcome variable , yet the 

predicted values are a function of the explanatory variables. Therefore, the most con-

sequential omitted variables are those that are correlated with one or more of the explanatory 

variables. Using the wrong functional form—such as when linear term is used rather 

than a more appropriate nonlinear term (see the linearity assumption)—is another type. 

Misspecifi cation bias usually results in incorrect standard errors because it can cause the 

independence assumption to be violated (recall that the errors are assumed independent). 

The slopes are also aff ected when misspecifi cation bias is present. Stata has several 

approaches for examining specifi cation problems, although none is a substitute for a good 

theory.

The most straightforward test for OLS regression models is Stata’s linktest com-

mand. This command is based on the notion that if a regression model is properly specifi ed, 

we should not be able to fi nd any additional explanatory variables that are statistically signifi -

cant except by chance (Pregibon, 1980). The test creates two new variables: the predicted val-

ues, denoted _hat, and squared predicted values, denoted _hatsq. The model is then reesti-

mated using these two variables as predictors. The fi rst, _hat, should be statistically 

signifi cant since it is the predicted value. On the other hand, _hatsq should not be signifi -

cant, because if our model is specifi ed correctly, the squared predictions should not have 

explanatory power. That is, we would not expect _hatsq to be a signifi cant predictor if our 

model is specifi ed correctly. So, we should assess the p-value for _hatsq.

Example 1.7 

* after Example 1.2

linktest
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The results shown in Example 1.7 suggest that there is an omitted variable or some other 

specifi cation problem. An alternative, but similar, approach is Ramsey’s (1969) RESET 

(regression specifi cation error test), which is implemented in Stata using the ovtest 

command.

Example 1.7 (Continued)

ovtest

This test has as its null hypothesis that there is no specifi cation error. It is clearly rejected. 

A third type of test that we do not discuss here, but is available in Stata, is called a Hausman 

(1978) test. It is more generally applicable than the other two tests. Unfortunately, these tests 

do not tell us if the misspecifi cation bias is due to omitted variables or because we have the 

wrong functional form for one or more features of the model. To test for problems with func-

tional forms, we are better off  examining partial residual plots and the distribution of the 

residuals. Theory remains the most important diagnostic tool for understanding this 

assumption, though.

8. Measurement Error

We assume that y and the x are measured without error. When both are measured with error—

a common situation in the social sciences—the regression coeffi  cients are often underesti-

mated and standard errors are incorrect. For example, suppose that only the explanatory 

variable is measured with error. Here we have x, as we observe it, made up of a true score 

plus error {x1i
∗ = x1i + vi}. This can be represented with the following:

Distributing by the slope we have the following regression equation:

So the error term now has two components (β1v1i and εi) and x is usually correlated 

with at least one of them (although, in some cases, it may not be). Thus, measurement 

error is a form of misspecifi cation bias and violates the independence assumption. But the 

estimated slope is biased, usually towards zero (attenuation bias). The degree of bias is typi-

cally unknown, though; it depends on how much error there is in the measurement of x. The 

standard error of the slope is also incorrect since the sum of squares of x is not accurate.
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Unfortunately, variables in the social and behavioral sciences are often measured with 

error, especially when using survey data. Stata off ers several models designed to address 

measurement error, including two- and three-stage least squares (instrumental variables 

approaches; see ivregress), a command called eivreg (errors-in-variables regression) 

where the analyst may set the reliabilities of the variables measured with error, and several 

other approaches. Type search measurement error, all in the command window 

(or use the help menu) to examine some of these options. Chapter 10 discusses some com-

monly used techniques for estimating latent variables, which allow one type of adjustment 

for measurement error.

9. Infl uential Observations

Strictly speaking, this is not an assumption of the OLS regression model. However, you may 

recall that infl uential observations include outliers and high leverage values that can aff ect 

the model in untoward ways. Some leverage points are bad and others are not so bad. Lever-

age points that fall along the regression line or plane are usually acceptable, even though 

they are relatively far away from the other values. Bad leverage points are extreme on the 

joint distribution of the explanatory variables. Their main infl uence is on the standard errors 

of the coeffi  cients (consider the standard error equation shown earlier in the chapter; lever-

age points can aff ect the denominator). Outliers—also known as vertical outliers—are 

extreme on the outcome variable and do not fall near the regression line or surface. Outliers 

are especially problematic because they can infl uence the coeffi  cients to a substantial degree 

(recall that OLS minimizes the squared distances from the observations to the regression line 

or surface).

Consider fi gure 1.9, which provides a scatterplot using a small set of data. It shows the 

eff ect of an outlier on the slope, with the solid line representing the slope with the outlier 

and the dashed line representing the slope without the outlier. Of course, the fi rst question 

we should ask is, why does this outlier exist?

Stata allows us to save studentized residuals, leverage values, and Cook’s D values (as 

well as other quantities such as DFFITS and Welch’s distances) to check for these types of 

observations. It also has some automated graphs, such as the lvr2plot. This graph exam-

ines the leverage values against the squared values of the standardized residuals (which are 

positive), thus providing a useful way to check for high leverage values and outliers at the 

same time. Figure 1.10 provides an example from our sei regression model.

lvr2plot * after Example 1.2

The two reference lines are the means for the leverage values (horizontal) and for the nor-

malized residual squared (vertical). It appears there is a cluster of observations that are rela-

tively high leverage values and one observation in particular that is a substantial outlier (see 

the right-hand portion of fi gure 1.10).
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The Cook’s D and leverage values may be saved using the commands given below. It is 

then a good idea to examine these values with some exploratory methods, such as stem-and-

leaf plots and box-and-whisker plots. Another useful visualization is a scatterplot of Cook’s 

D values and leverage values with reference lines at the thresholds of each. A common 

Cook’s D threshold is 4/(n − k − 1) or, for our model, 4/(2,231 − 4 − 1) = 0.0018. There are also 

two frequently used thresholds for determining high leverage values: 2(k + 1)/n and 3ĥ or 

three times the average leverage value. Given the large sample size, we use the latter thresh-

old, which rounds to 0.01 for our model. Figure 1.11 provides the graph.

predict cook, c * after Example 1.2

predict leverage, leverage

twoway scatter cook leverage, yline(0.0018) xline(0.01)

The twoway subcommand places reference lines in the graph that designate the thresholds. 

The graph shows a few outliers that are not high leverage values (in the upper left quadrant) 

and at least three points that are outliers and high leverage points (upper right quadrant). 

These deserve further exploration (jittering the points using jitter(5) as a subcommand may 

reveal the number of points better).

At this juncture, we may wish to use a robust regression model or a median regression 

model to minimize the eff ects of the outliers. As an example, Example 1.8 provides a 

median regression model in Stata that is invoked with the quantile regression (qreg) 

command.
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Example 1.8

qreg sei female educate nonwhite pasei

Median regression diff ers from OLS regression by minimizing the distances between the 

predicted values and the median values for the outcome variable. So it is not as aff ected by 

outliers (i.e., it is a robust technique). Note that the general results of this model are not 

much diff erent than what we have seen before. The nonwhite coeffi  cient has a p-value some-

what above the common threshold level, but education and parents’ socioeconomic status 

remain predictive of sei. Alternatives to qreg include rreg (robust regression) and mmre-
gress, which has some desirable properties when the model is aff ected by infl uential 

observations. Kneib (2013) provides a good overview of some alternatives to linear regression 

based on means.

 MODIFYING THE OLS REGRESSION MODEL

We have now reviewed how to test the assumptions of the model and discussed a few ideas 

about what to do when they are violated. However, we focused on simply correcting 

the model for some of these violations, such as heteroscedasticity and infl uential observa-

tions, with an eye toward getting unbiased or more precise coeffi  cients. But we should also 

think carefully about model specifi cation in light of what the tests have shown. For 

example, recall that education and sei may be involved in a nonlinear association, that the 

residuals from the model are not quite normally distributed, and that education is involved 

in the heteroscedastic errors. These may or may not be related, but are probably worth 

exploring in more detail. Some detective work also allows us to illustrate alternative regres-

sion models.

To begin, remember that the residuals from the model, as well as the original sei varia-

ble, are not normally distributed. So we should consider a transformation to normality, if 

we can fi nd one. Recall also that taking the natural logarithm (loge) of a variable with a long 

tail often normalizes its distribution. In Stata, we may do this with the following 

command:
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generate logsei = log(sei)

According to a kernel density graph, it appears we have made things worse; there is now a 

clear bimodal distribution that was induced by the transformation (determine this for your-

self; why did it occur?). Nonetheless, for illustrative purposes, reestimate the model using 

logsei as the outcome variable (see Example 1.9).9

The directions of the eff ects are the same, and the standardized eff ects based on the beta 

weights are similar. But, of course, the scale has changed so the interpretations are diff erent. 

For example, we could now interpret the education coeffi  cient in this way:

• Adjusting for the eff ects of sex, nonwhite, and parents’ socioeconomic status, 

each 1-year increase in education is associated with a 0.074 log-unit increase in 

socioeconomic status.

Example 1.9

regress logsei female educate nonwhite pasei, beta

Another convenient way to interpret regression coeffi  cients when we have a log-linear model 

(since the logarithm of the outcome variable is used, the model is assumed linear on a loga-

rithmic scale) is to use a percentage change formula that, in general form, is

In our example, we can transform the education coeffi  cient using this formula. Taking 

advantage of Stata’s display command (which acts as a high-end calculator), we fi nd

9. See http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/, for an 
alternative approach to this model.

http://blog.stata.com/2011/08/22/use-poisson-rather-than-regress-tell-a-friend/
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display 100 × (exp(0.0743) − 1)

7.713

How can we use this number in our interpretation? Here is one approach:

• Adjusting for the eff ects of sex, nonwhite, and parents’ socioeconomic status, 

each one-year increase in education is associated with a 7.71% increase in the 

socioeconomic status score.

The nonwhite coeffi  cient may be treated in a similar way, keeping in mind that it is a 

binary variable.

• Adjusting for the eff ects of sex, education, and parents’ socioeconomic status, 

socioeconomic status scores among nonwhites are expected to be 7.69% lower 

than among whites.

It is important to reexamine the assumptions of the model to see what implications log-

ging sei has for them. The diagnostics reveal some issues that may need to be addressed. The 

partial residual plot with education still looks odd. Moreover, there remains a problem with 

heteroscedasticity according to imtest, but not hettest. Glejser’s test shows no signs of 

this problem, so perhaps we have solved it. There are still some outliers and high leverage 

points. These could be addressed using a robust regression technique, such as qreg or 

mmregress, or by assessing the variables more carefully.

 EXAMINING EFFECT MODIFICATION WITH INTERACTION TERMS

In this section, we briefl y review interaction terms. These are used when the analyst suspects 

that there is eff ect modifi cation in the model. Another way of saying this is that some 

third variable moderates (or modifi es) the association between an explanatory and the 

outcome variable. For example, if you’ve worked previously with the GSS data set used here, 

you may recall that education moderates the association between gender and personal 

income.

Do you have any ideas for moderating eff ects in our socioeconomic status model? Con-

sider education, parents’ socioeconomic status, and socioeconomic status. One hypothesis 

is that parents’ status matters a great deal for one’s own status, but this can be overcome by 

completing more years of formal education. Hence, education may moderate the association 

between parents’ status and one’s own status. To test this model, we introduce an interaction 

term in the model using Stata’s factor variables options (help factor variables). 

Since including interaction terms often induces collinearity issues, the regression model is 

followed by a request for the VIFs (see Example 1.10).
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Example 1.10

regress sei female nonwhite c.educate##c.pasei

                                                                                   
            _cons     2.064548   4.498666     0.46   0.646    -6.757475    10.88657
                   
c.educate#c.pasei     .0106026   .0064437     1.65   0.100    -.0020337     .023239
                   
            pasei     -.077266   .0954341    -0.81   0.418    -.2644152    .1098833
          educate     3.235946   .3204869    10.10   0.000     2.607461     3.86443
         nonwhite    -2.928681   .9299653    -3.15   0.002    -4.752371    -1.10499
           female    -.2225939   .6582242    -0.34   0.735    -1.513392    1.068204
                                                                                   
              sei        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                                   

       Total    828265.081     2,230  371.419319   Root MSE        =    15.493
                                                   Adj R-squared   =    0.3537
    Residual    534074.451     2,225  240.033461   R-squared       =    0.3552
       Model    294190.629         5  58838.1259   Prob > F        =    0.0000
                                                   F(5, 2225)      =    245.12
      Source         SS           df       MS      Number of obs   =     2,231

vif

    Mean VIF       17.14
                                    
     c.pasei       46.35    0.021574
   c.educate# 
       pasei       29.39    0.034030
     educate        7.92    0.126332
    nonwhite        1.02    0.982143
      female        1.00    0.996049
                                    
    Variable         VIF       1/VIF  

Although we might wish to make some interpretations from this model, we should 

fi rst pause and consider what the VIFs indicate. These are typically evaluated in models 

with interaction terms. When we multiply the values of two variables together, the resulting 

variable is usually highly correlated with its constituent variables. For example, the 

correlation between pasei and the interaction term is 0.923. The VIFs show the implications 

of the high correlations. Consider the square root of the largest VIF: . 

This is substantial (Fox, 2016). What implication does it have for the model? It is unclear, but 

we can be confi dent that the standard errors for these two variables are infl ated in the regres-

sion model. What is a solution? One approach is to take the z-scores of education and par-

ents’ status and reestimate the model using the z-scores of the variables along with the 

updated interaction term. Example 1.11 provides the steps for carrying this out.
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Example 1.11

egen zeducate = std(educate) * calculate z-scores of educate

egen zpasei = std(pasei) * calculate z-scores of pasei

regress sei female nonwhite c.zeducate##c.zpasei

vif

The main implication is that the coeffi  cient for parents’ status is now statistically signifi cant. 

This might be because, before taking the z-scores, its standard error was unduly infl ated by 

collinearity (although there could be other reasons). Moreover, there are positive coeffi  cients 

for education, parents’ status, and their interaction term. This suggests that the slope of the 

association between parents’ status and one’s own status is slightly steeper at higher levels 

of education, although note that the slope for the interaction term is not statistically signifi -

cant (p = 0.1). This fails to support the hypothesis.

Nonetheless, assume that we did fi nd an interesting association. Instead of relying only 

on the regression coeffi  cients and their directional eff ects, it is helpful to graph predicted 

values for the diff erent groups represented by the moderator. Here is one approach to this 

that uses the predicted values from the OLS regression model and examines three categories 
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of education. (The margins and marginsplot commands could also be used to construct 

a similar graph.)

predict seihat, xb * after Example 1.10

recode educate (0/7=.)(8/11=1)(12=2)

 (13/15=.)(16/max=3), generate(cateducate)

We have divided the education variable into three parts: those who did not graduate from 

high school, those who graduated from high school but did not attend college, and those who 

graduated from college, some of whom may have attended graduate school. We then request 

graphs that include linear fi t lines for each parent socioeconomic status–sei association (see 

fi gure 1.12). This provides a simple way to compare the slopes for particular education 

groups to see if they appear distinct.

twoway lfi t seihat pasei, by(cateducate)

There are only slight diff erences in these three slopes. Recall that, even after taking care of 

the collinearity problem, the coeffi  cient for the interaction term was not statistically 
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signifi cant, so the graphs should not be surprising. The combination of these graphs and the 

unremarkable interaction term in Example 1.11 should persuade us that there is not much, 

if any, eff ect modifi cation in this situation.

 ASSESSING ANOTHER OLS REGRESSION MODEL

As a fi nal exercise in this review of OLS regression, use the USData data set (usdata.dta) and 

assess a model that examines violent crimes per 100,000 population (violrate) as the out-

come variable and the following explanatory variables: unemployment rate (unemprat), gross 

state product (gsprod), and state migration rate (mig_rate) (see Example 1.12). Then, examine 

some of the assumptions of the model, judge whether there are violations, and consider what 

we might do about them. The following examples provide some guidance for executing 

these steps.

Example 1.12

regress violrate unemprat gsprod mig_rate

cprplot mig_rate, lowess

What does the graph in fi gure 1.13 suggest? What might we do about it? Check the other 

explanatory variables also.

rvfplot

What does the residuals-by-fi tted plot show (fi gure 1.14)? What other tests that are related 

to the test that this graph provides would you like to see? Is there a problem and, if yes, what 

should we do about it?

Check for multicollinearity. Are there any problems? How can you tell?

What does the following test indicate about an assumption of the model? Which assump-

tion? Should we have any additional concerns regarding this assumption after using this test?



–4
00

–2
00

0
20

0
40

0
60

0
C

om
po

ne
nt

 p
lu

s 
re

si
du

al

–5,000 0 5,000 10,000 15,000
Migrations per 100,000

FIGURE 1.13

–4
00

–2
00

0
20

0
40

0
60

0

R
es

id
ua

ls

200 400 600 800 1,000 1,200

Fitted values

FIGURE 1.14



32����Review of Linear Regression Models

linktest

kdensity rstudent * rstudent = studentized residuals

Consider fi gure 1.15. It shows the distribution of the studentized residuals from our model. 

Is there any cause for concern? Why or why not?

Finally, after saving two types of values using Stata’s predict post-command, generate 

fi gure 1.16. What does it represent? What is the source of the two reference lines? What do 

you conclude based on this graph? What should we do in this situation?

twoway scatter cook leverage, yline(0.087) xline(0.16) 

 mlabel(state)
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Do you have any concluding thoughts about this OLS regression model?

Consider the following as a fi nal step in this exercise. Why is California an infl uential 

observation in the model? The answer is that it has a very large gross state product value. Exam-

ine the distribution of gross state product. Then, as shown in Example 1.13, take its natural log-

arithm (plus one to avoid negative values) and reestimate the model, check the partial residual 

plot with the log of gross state product, and reestimate the infl uential observations graph.

Example 1.13

gen loggsprod = log(gsprod + 1)

regress violrate unemprat loggsprod mig_rate
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cprplot loggsprod * see fi gure 1.17

predict cook, c

predict leverage, leverage

twoway scatter cook leverage, yline(0.087) xline(0.16) 

 mlabel(state)

Nevada remains a high leverage point and is now the most extreme outlier (see fi gure 1.18). 

It is not clear why, but an in-depth exploration shows that it has a relatively high 

migration rate compared to other states. This may lead to the high leverage value. 

Dropping Nevada from the model leads to a better fi t and fewer infl uential observations, 

but migration rate is no longer a statistically signifi cant predictor (see Example 1.14 and 

fi gure 1.19).

However, before we close the case on migration and violent crimes, we need to think 

carefully about what we have done. Do we have suffi  cient justifi cation for dropping Nevada 

from the analysis? Are there other steps we should take fi rst before doing this? Do not forget 

that dropping legitimate observations is a dubious practice. It is much better to consider the 

source; for example, why does Nevada have a migration rate that appears to be substantially 

higher than in other states? Does the association between violent crimes and the migration 

rate have any particular implications for a state such as Nevada? There are numerous paths 

one might take to understand the variables and the model better.
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Example 1.14

regress violrate unemprat loggsprod mig_rate if state 

 ~= “Nevada”

predict cook, c

predict leverage, leverage

twoway scatter cook leverage if state ~= “Nevada”, 

 yline(0.091) xline(0.204) mlabel(state)
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Finally, why West Virginia (see fi gure 1.19)? Sort by the Cook’s D values and list the varia-

bles, predicted values, Cook’s D values, and leverage values. This shows that West Virginia 

had fewer violent crimes than expected, but it is also relatively high on unemployment. Per-

haps something about this is causing it to be an outlier. Given all this eff ort, should we rely 

on an OLS regression model to analyze state-level violent crimes or is an alternative model 

preferable? We do not investigate further here, but you may wish to.

 FINAL WORDS

The OLS regression model is a powerful and frequently used statistical tool for assessing 

associations among variables. If the assumptions discussed in this chapter are satisfi ed, it 

can provide good estimates of the coeffi  cients with which to judge these associations. How-

ever, meeting these assumptions can be challenging, even though some analysts note that 

only the fi rst four are critical for achieving the BLUE property. Moreover, even when the 

errors are not distributed normally, the OLS regression model provides pretty accurate and 

effi  cient results. However, there are alternative models that can also provide good results but 

do not make some of these assumptions. Some of these are also designed for the common 

situation in the social and behavioral sciences when the outcome variable is not continuous 

and the relationship between variables is not, strictly speaking, linear. In this situation, lin-

ear models may provide questionable results, so, as discussed in subsequent chapters, these 

alternative models can be valuable.
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EXERCISES FOR CHAPTER 1

 1.  The GPA data set (gpa.dta, available on the book’s website) includes 20 observations from a 
sample of college students. Examine the variables to make sure you understand what they 
are measuring. Then, complete the following exercises.
a. Construct a scatterplot with gpa on the y-axis and sat_quan on the x-axis. What does the 

scatterplot suggest about their association? Are there any unusual patterns shown in 
the scatterplot?

b. Estimate a simple OLS regression model that uses gpa as the outcome variable and 
sat_quan as the explanatory variable. Interpret the intercept and the unstandardized 
coeffi  cient for sat_quan.

 2. Estimate the following three OLS regression models that each uses gpa as the outcome 
variable:
a. Use only hs_engl as the explanatory variable.
b. Use hs_engl and sat_verb as explanatory variables.
c. Use hs_engl, sat_verb, and sat_quan as explanatory variables.
d. Interpret the unstandardized coeffi  cient for hs_engl from all three models.
e Interpret the R2 from the model in 2c.

 3. Please describe what happened to the association between hs_engl and gpa as we moved 
from the fi rst to the second to the third model. Speculate, in a conceptual way, why this 
change occurred.

 4. Using the model in 2c, check the following OLS regression assumptions:
a. Normality of the residuals.
b. Homoscedasticity.

 5. Check the model for infl uential observations.

CHAPTER RESOURCES: SOME USEFUL STATA COMMANDS

Rather than describing each, here is brief list of several of the most useful commands for 

data management, exploratory analysis, and regression modeling. Type help command 
name in Stata’s command window for more information on each. The Stata User Manuals 

provide even more information.

fi ndit Stata command or statistical procedure
help Stata command or statistical procedure
set memory xx
use “fi lename.dta”
insheet using “fi lename.txt”
save “fi lename.dta”
clear (be careful, this removes data from memory!)
describe
edit
browse
qui command (omits the output)
list varnames
codebook varnames
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reshape data type, variables
recode varname
replace varname
generate newvar = f(oldvarname)
egen newvar = f(oldvarname)
drop varname
summarize varnames, detail
table varname or varname1 varname2
tabulate varname or varname1 varname2
histogram varname, normal
graph bar varname, over(group variable)
graph dot varname, over(group variable)
graph box varname, over(group variable)
kdensity varname
scatter varname1 varname2
lowess varname1 varname2
correlate varlist
spearman varlist
mean varname, over(group variable)
ci varname
ttest varname1 = varname2 or varname, by(group variable)
prtest varname1 = varname2
ranksum varname, by(group variable)
median varname, by(group variable)
regress y-varname x-varnames
predict newvar, type (e.g., residual, predicted value)
test varnames
glm y-varname x-varnames, link(link function) family(distribution)


